Правило левой руки простыми словами

Содержание

 Правило левой руки

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»

Wikimedia Foundation. 2010.

  • Правило знаков Декарта
  • Правило октетов

Смотреть что такое Правило левой руки в других словарях:

ПРАВИЛО ЛЕВОЙ РУКИ — ПРАВИЛО ЛЕВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА … Научно-технический энциклопедический словарь

правило левой руки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleleft hand ruleMaxwell s rule … Справочник технического переводчика

правило левой руки — kairės rankos taisyklė statusas T sritis fizika atitikmenys: angl. Fleming’s rule; left hand rule vok. Linke Hand Regel, f rus. правило левой руки, n; правило Флеминга, n pranc. règle de la main gauche, f … Fizikos terminų žodynas

Правило правой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия

Левой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия

Правило левой ноги — Жарг. шк. Шутл. 1. Правило левой руки. 2. Любое невыученное правило. (Запись 2003 г.) … Большой словарь русских поговорок

ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… … Большой Энциклопедический словарь

ЛЕВОЙ РУКИ ПРАВИЛО — для определения направления механич. силы, к рая действует на находящийся в магн. поле проводник с током: если расположить левую ладонь так, чтобы вытянутые пальцы совпадали с направлением тока, а силовые линии магн. поля входили в ладонь, то… … Физическая энциклопедия

левой руки правило — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… … Энциклопедический словарь

ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, к рая действует на находящийся в магн. поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магн. поля входили в ладонь, то отставленный… … Естествознание. Энциклопедический словарь

Правило правой и левой руки в физике: применение в повседневной жизни

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике. Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном). Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Правило правой и левой руки в физике: применениеПравило правой руки (буравчика) легко понять, глядя на обычный штопор

Читайте в статье:

Формулировка правила буравчика

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.

Простое и понятное объяснение с наглядным примеромПростое и понятное объяснение с наглядным примером

Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.

Главное – не забыть, в каком направлении течёт токГлавное – не забыть, в каком направлении течёт ток

Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.

Ещё одно чёткое и понятное объяснениеЕщё одно чёткое и понятное объяснение

Применение правила правой руки для соленоида

Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.

Применение правила правой руки для соленоидаПрименение правила правой руки для соленоида

Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

Попробуем разобраться, как это работает.

Применение для силы АмпераПрименение для силы Ампера

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило правой и левой руки в физике: применение в повседневной жизни

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Применение для силы ЛоренцаПрименение для силы Лоренца

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Правило правой и левой руки в физике: применение в повседневной жизни

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.

При помощи рук можно определить множество различных параметровПри помощи рук можно определить множество различных параметров

Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция Seti.guru с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.

Правило буравчика, правой и левой руки

В физике и электротехнике широко используются различные приемы и способы, позволяющие определить одну из характеристик магнитного поля – направленность напряженности. С этой целью используется закон буравчика, правой и левой руки. Данные способы позволяют получить довольно точные результаты.

Правило буравчика и правой руки

Закон буравчика используется для определения направленности напряженности магнитного поля. Оно работает при условии прямолинейного расположения магнитного поля, относительно проводника с током.

Это правило заключается в совпадении направленности магнитного поля с направленностью рукоятки буравчика, при условии вкручивания буравчика с правой нарезкой в направлении электрического тока. Данное правило применяется и для соленоидов. В этом случае, большой палец, оттопыренный на правой руке, указывает направление линий магнитной индукции. При этом, соленоид обхватывается так, что пальцы указывают направление тока в его витках. Обязательным условием является превышение длиной катушки ее диаметра.

Правило правой руки противоположно правилу буравчика. При обхватывании исследуемого элемента, пальцы в сжатом кулаке указывают направление магнитных линий. При этом, учитывается поступательное движение по направлению магнитных линий. Большой палец, который отогнут на 90 градусов по отношению к ладони, указывает направление тока.

При движущемся проводнике, силовые линии перпендикулярно входят в ладонь. Большой палец руки вытянут перпендикулярно, и указывает направление движения проводника. Оставшиеся четыре оттопыренных пальца, расположены в направлении индукционного тока.

Правило левой руки

Среди таких способов, как правило буравчика, правой и левой руки, следует отметить правило левой руки. Для того, чтобы это правило работало, необходимо расположить левую ладонь таким образом, чтобы направление четырех пальцев было в сторону электрического тока в проводнике. Индукционные линии входят в ладонь перпендикулярно под углом 90 0 . Большой палец отогнут, и указывает направление силы, действующей на проводник. Обычно, этот закон применяется, когда нужно определить направление отклонения проводника. В данной ситуации проводник располагается между двумя магнитами и по нему пропущен электрический ток.

Правило левой руки формулируется еще и таким образом, что четыре пальца на левой руке располагаются в направлении, куда движутся положительные или отрицательные частицы электрического тока. Индукционные линии, как и в других случаях, должны перпендикулярно располагаться относительно ладони и входить в нее. Большой оттопыренный палец указывает на направление силы Ампера или Лоренца.

Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки

Благодаря сегодняшнему видеоуроку мы узнаем, как происходит обнаружение магнитного поля по его действию на электрический ток. Запомним правило левой руки. С помощью опыта мы узнаем, как происходит обнаружение магнитного поля по его воздействию на другой электрический ток. Изучим, в чём состоит правило левой руки.

На этом уроке мы обсудим вопрос, связанный с обнаружением магнитного поля по его действию на электрический ток, и познакомимся с правилом левой руки.

Обратимся к опыту. Первый подобный эксперимент по исследованию взаимодействия токов был проведен французским ученым Ампером в 1820 году. Эксперимент заключался в следующем: по параллельным проводникам пропускали электрический ток в одном направлении, затем в разных направлениях наблюдали взаимодействие этих проводников.

Опыт Ампера

Рис. 1. Опыт Ампера. Сонаправленные проводники с током притягиваются, противонаправленные отталкиваются

Если взять два параллельных проводника, по которым проходит электрический ток в одном направлении, то в этом случае проводники будут друг к другу притягиваться. Когда в тех же самых проводниках электрический ток проходит в разных направлениях, проводники отталкиваются. Таким образом, мы наблюдаем силовое действие магнитного поля на электрический ток. Итак, можно сказать следующее: магнитное поле создается электрическим током и обнаруживается по его действию на другой электрический ток (сила Ампера).

Когда было проведено большое количество аналогичных экспериментов, то было получено правило, которое связывает между собой направление магнитных линий, направление электрического тока и силовое действие магнитного поля. Это правило получило название правило левой руки. Определение: левую руку нужно расположить таким образом, чтобы магнитные линии входили в ладонь, четыре вытянутых пальца указывали направление электрического тока – тогда отогнутый большой палец укажет направление действия магнитного поля.

Правило левой руки

Рис. 2. Правило левой руки

Обратите внимание: мы не можем говорить о том, что, куда направлена магнитная линия, туда и действует магнитное поле. Здесь взаимосвязь между величинами несколько сложнее, поэтому мы пользуемся правилом левой руки.

Вспомним, что электрический ток – это направленное движение электрических зарядов. Значит, магнитное поле действует на движущийся заряд. И мы можем воспользоваться в данном случае так же правилом левой руки для определения направления этого действия.

Обратите внимание на рисунок, на котором приведены различные случаи использования правила левой руки, и проанализируйте каждый случай самостоятельно.

Правило левой руки

Рис. 3. Различные случаи применения правила левой руки

Напоследок, еще один важный факт. Если электрический ток или скорость заряженной частицы направлены вдоль линий магнитного поля, то никакого действия магнитного поля на эти объекты не будет.

Список дополнительной литературы:

Асламазов Л.Г. Движение заряженных частиц в электрическом и магнитном полях // Квант. — 1984. — № 4. — С. 24-25. Мякишев Г.Я. Как работает электродвигатель? // Квант. — 1987. — № 5. — С. 39-41. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974. Яворский Б.М., Пинский А.А. Основы физики. Т.2. – М.: Физматлит, 2003.

Правило буравчика, правой и левой руки

Правило буравчика, правой руки и левой руки нашли широкое применение в физике. Мнемонические правила нужны для лёгкого и интуитивного запоминания информации. Обычно это приложение сложных величин и понятий на бытовые и подручные вещи. Первым, кто сформулировал данные правила, является физик Петр Буравчик. Данное правило относится к мнемоническому и тесно соприкасается с правилом правой руки, его задачей является определением направления аксиальных векторов при известном направлении базисного. Так гласят энциклопедии, но мы расскажем об этом простыми словами, кратко и понятно.

Объяснение названия

Большинство людей помнят упоминание об этом из курса физики, а именно раздела электродинамики. Так вышло неспроста, ведь эта мнемоника зачастую и приводится ученикам для упрощения понимания материала. В действительности правило буравчика применяют как в электричестве, для определения направления магнитного поля, так и в других разделах, например, для определения угловой скорости.

Правило буравчика

Под буравчиком подразумевается инструмент для сверления отверстий малого диаметра в мягких материалах, для современного человека привычнее будет привести для примера штопор.

Важно! Предполагается, что буравчик, винт или штопор имеет правую резьбу, то есть направление его вращения, при закручивании, по часовой стрелке, т.е. вправо.

На видео ниже предоставлена полная формулировка правила буравчика, посмотрите обязательно, чтобы понять всю суть:

Как связано магнитное поле с буравчиком и руками

В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.

Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.

Правило буравчика имеет следующий смысл: при вкручивании острия буравчика вдоль направления тока – рукоятка будет вращаться по направлению вектора B (вектор линий магнитной индукции).

Правило правой руки работает так:

Наглядное объяснение

Поставьте большой палец так, словно вы показываете «класс!», затем поверните руку так, чтобы направление тока и пальца совпадали. Тогда оставшиеся четыре пальца совпадут с вектором магнитного поля.

Наглядный разбор правила правой руки:

Чтобы увидеть это более наглядно проведите эксперимент – рассыпьте металлическую стружку на бумаге, сделайте в листе отверстие и проденьте провод, после подачи на него тока вы увидите, что стружка сгруппируется в концентрические окружности.

Магнитное поле в соленоиде

Всё вышеописанное справедливо для прямолинейного проводника, но что делать, если проводник смотан в катушку?

Мы уже знаем, что при протекании тока вокруг проводника создается магнитное поле, катушка – это провод, свёрнутый в кольца вокруг сердечника или оправки много раз. Магнитное поле в таком случае усиливается. Соленоид и катушка – это, в принципе, одно и то же. Главная особенность в том, что линии магнитного поля проходят так же как и в ситуации с постоянным магнитом. Соленоид является управляемым аналогом последнего.

Правило правой руки для соленоида (катушки) нам поможет определить направление магнитного поля. Если взять катушку в руку так, чтобы четыре пальца смотрели в сторону протекания тока, тогда большой палец укажет на вектор B в середине катушки.

Катушка

Если закручивать вдоль витков буравчик, опять же по направлению тока, т.е. от клеммы «+», до клеммы «-» соленоида, тогда острый конец и направление движения как лежит вектор магнитной индукции.

Простыми словами – куда вы крутите буравчик, туда и выходят линии магнитного поля. То же самое справедливо для одного витка (кругового проводника)

Определение направления тока буравчиком

Если вам известно направление вектора B – магнитной индукции, вы можете легко применить это правило. Мысленно передвигайте буравчик вдоль направления поля в катушке острой частью вперед, соответственно вращение по часовой стрелки вдоль оси движения и покажет, куда течет ток.

Если проводник прямой – вращайте вдоль указанного вектора рукоятку штопора, так чтобы это движение было по часовой стрелке. Зная, что он имеет правую резьбу – направление, в котором он вкручивается, совпадает с током.

Что связано с левой рукой

Не путайте буравчика и правило левой руки, оно нужно для определения действующей на проводник силы. Выпрямленная ладонь левой руки располагается вдоль проводника. Пальцы показывают в сторону протекания тока I. Через раскрытую ладонь проходят линии поля. Большой палец совпадает с вектором силы – в этом и заключается смысл правила левой руки. Эта сила называется силой Ампера.

Левая рука

Можно это правило применить к отдельной заряженной частице и определить направление 2-х сил:

Представьте, что положительно заряженная частица двигается в магнитном поле. Линии вектора магнитной индукции перпендикулярны направлению её движения. Нужно поставить раскрытую левую ладонь пальцами в сторону движения заряда, вектор B должен пронизывать ладонь, тогда большой палец укажет направление вектора Fа. Если частица отрицательная – пальцы смотрят против хода заряда.

Если какой-то момент вам был непонятен, на видео наглядно рассматривается, как пользоваться правилом левой руки:

Важно знать! Если у вас есть тело и на него действует сила, которая стремится его повернуть, вращайте винт в эту сторону, и вы определите, куда направлен момент силы. Если вести речь об угловой скорости, то здесь дело обстоит так: при вращении штопора в одном направлении с вращением тела, завинчиваться он будет в направлении угловой скорости.

Выводы

Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.

Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:

Наверняка вы не знаете:

Правило буравчика — коротко и ясно, определение, формула и схемы

При решении многих задач, связанных с расчётом электрических величин, необходимо знать линии магнитной индукции относительно электрического тока и наоборот. Для определения ориентации сил и полей часто используют правило буравчика, дающее представление о направлении векторов, магнитном поле и других данных, используемых в электротехнике, физике.

правило буравчикаПравило буравчика

Правило буравчика (ПБ), именуемое ещё и правилом штопора, винта сводится к несложному определению. Если кончик буравчика нацелить по направлению тока, то линии магнитной индукции (ЛМИ) сориентируются в том направлении, в котором будет крутиться рукоятка инструмента.

Указанный на рисунке пример отчётливо демонстрирует описанное правило. Воображаемый винт с правосторонней резьбой, кругооборот которого совпадает с линиями магнитного поля (круги красного цвета), указывает на направление тока (стрелка синего цвета).

Это главная и общая формулировка правила, помогающая выявить направление в пространстве нужных для расчётов осевых векторов:

  • параметров индукционного тока;
  • угловой скорости;
  • магнитной индукции.

Правило буравчика кратко и понятно

Схематичное изображение правила буравчикаСхематичное изображение правила буравчика

В электротехнике ПБ показывает направление ЛМИ с привязкой к вектору электрического тока, проходящего в проводнике, и наоборот — определяет путь электротока в катушке во взаимосвязи с вектором ЛМИ.

Для экспериментального понимания нужно взять штопор или винт с правосторонней резьбой и сначала закручивать, а после откручивать. В первом случае это будет происходить по часовой стрелке и винт (штопор) будет двигаться вверх, а во втором случае вращение будет против часовой стрелки и винт (штопор) будет двигаться вниз. Соответственно этому и направление тока будет следовать поведению винта: вверх в первом случае и вниз во втором случае (показано стрелкой).

Правило правой и левой руки в физике

правило правой рукиПравило правой руки

Для визуального восприятия правила правой руки (ППР) надо зафиксировать эту руку в таком положении, чтобы силовые линии магнитного поля (ЛМП) оказались в ладони, а большой палец на уровне прямого угла был бы отогнут вверх, напоминая жест «всё отлично». Указанное большим пальцем направление будет аналогично направлению тока относительно МП. Другие 4 пальца кисти руки, укажут на сторону вращения линий индукции, создаваемого МП. Отсюда вывод — ППР определяет направление ЛМИ с направлением тока прямолинейного проводника.

правило левой рукиПравило левой руки

Правило левой руки (ПЛР) обозначает направление силы, воздействующей на имеющийся в магнитном поле проводник с током. Если ладонь левой руки зафиксировать таким образом, чтобы кисть пронизывали ЛМИ, а 4 пальца вытянуть по курсу тока в проводнике, тогда откинутый под прямым углом большой палец, укажет направленность силы, действующей на плюсовой заряд.

Отмеченное правило справедливо при решении задач как по определению сил Лоренца, так и Ампера.

Правило левой руки для Ампера и ЛоренцаПравило левой руки для закона Ампера и силы Лоренца

Справка! На минусовой заряд сила со стороны МП влияет в обратном направлении.

Правило буравчика: формулировка и определение

Схема и обозначения для правила буравчикаСхема и обозначения для правила буравчика

Формулировка и определение ПБ известны всем, кто знаком со школьным курсом физики. Но главным в этом правиле является его понимание, которое заключается в следующем:

  1. ПБ, не являясь законом физики, поясняет основополагающее свойство электромагнетизма.
  2. ПБ показывает свойство электрического тока и действующих рядом с ним магнитных силовых полей.

Правило буравчика: формула

ПБ даёт возможность определить некоторые параметры в электродинамике без каких-либо проблем. Взаимосвязь физических величин была выявлена в XIX столетии законом Фарадея: E = – dФ/dt, где

  • Е — ЭДС;
  • Ф — создаваемый вектором индукции магнитный поток;
  • t — временной интервал.

«Минус», стоящий в формуле после знака равенства, объясняется условием обратной направленности ЛМП току в проводнике.
Для простого рассмотрения методики использования ПБ данные, по какому методу и какое соответствие должно быть для тока в проводнике, движущемся в МП, представлены в виде таблицы.

Метод определения Соответствие
ППР
Направление движения Б действующей на проводник силе
Направление сложенных пальцев индукционному току

В нижеследующей таблице представлены метод и соответствие для левой руки.

Метод определения Соответствие
ПЛР
Направление большого пальца движению контрольного провода
Направление сложенных пальцев току в контрольном проводе

Для чего применяют правило буравчика

Известно, что электроток — это направленное движение элементарных частиц, переносящих заряд электричества по имеющим электропроводимость проводникам.

Магнитные поля вокруг проводникаМагнитные поля вокруг проводника

Если взять источник электродвижущей силы (ЭДС) с током, идущим по проводу замкнутой цепи, то есть от «плюса» к «минусу», то в окружении проводника происходят вращающиеся по определённому кругу, магнитные кругообороты, конфигурация которых имеет важное значение. Эти крутящиеся поля взаимодействуют друг с другом и могут притягивать или отталкивать проводники к себе и от себя. А зависит это от того, как и в какую сторону вращаются магнитные поля.

Характер такой взаимосвязи был сформулирован Ампером в виде закона, который стал основой для возникновения электромоторов. Без знания ПБ (правила буравчика) невозможно было бы изобрести электромотор. В этом заключается экспериментальное применение правила.

При расчёте катушек индукции характерным является использование ПБ, а именно с учётом стороны, в которую направлено завихрение, можно будет воздействовать на движущийся ток, в том числе создавать при необходимости противоток.

Правило правой руки для магнитного поля

Правило правой руки для магнитного поляПравило правой руки для магнитного поля

Если в середину обмотки стремительно ввести и вывести постоянный магнит, то указатель амперметра в момент ввода отклонится в одну сторону, а вывода — в обратную.

Возникшие в таких случаях электротоки именуются индукционными. Причиной их появления является электродвижущая сила индукции (ЭДС).
ЭДС в проводниках создаётся из-за действия изменяющихся МП, в которых расположены эти проводники.

Направление ЭДС индукции в проводнике по ППР можно высказать следующим образом:
Если кисть правой руки установить ладонью к северному полюсу в том положении, чтобы отогнутый большой палец указывал в сторону движения проводника, то четыре пальца укажут на направление ЭДС индукции.

Правило правой руки для соленоида (катушки индуктивности)

Описанный принцип винта имеет отношение для случаев с прямолинейным проводником электротока. И всё же в электротехнике используются также агрегаты с проводниками, не имеющими прямолинейной формы, а закон винта в таких случаях не применяется. Это касается катушек индуктивности и соленоидов.

Соленоид, как вид катушки, представлен в виде обмотки провода в форме цилиндра с длиной, намного превышающей диаметр соленоида. Дроссель индуктивности разнится от соленоида лишь длиной самого проводника.

Правило правой руки для катушки индуктивностиПравило правой руки для катушки индуктивности

Физик Ампер на основе своих изучений выяснил и подтвердил, что при прохождении электрического тока по дросселю индуктивности указатели компаса у краев провода обмотки цилиндрического типа поворачивались противоположными концами в направлении недоступных зрению потоков ЭМ поля. Эти опыты показали, что около дросселя индуктивности с током создаётся МП, а обмотка провода цилиндрического типа создает магнитные полюса. ЭМ-поле, формируемое электрическим током цилиндрической обмотки провода, похоже на МП постоянного магнита — конец обмотки провода цилиндрической формы, откуда выходят ЭМ потоки, указывает полюс северный, а обратный конец — южный.

Для распознания полюсов и ориентации ЭМ-линий в катушке с током применяется ППР для соленоида. Если за катушку взяться рукой так, чтобы сжатые пальцы кисти руки совпали по курсу потока электронов в витках, то оттопыренный под прямым углом большой палец укажет путь направленности электромагнитного фона — северный полюс.

Справка! Разнообразные формулировки ПБ, ППР или другие аналогичные правила не являются нужными по своей важности. Всех их непременно знать нет нужды, если знаешь основополагающее правило одного из вариантов. Тем не менее многие из представленных ниже правил удачно приспособлены к специфичным случаям их применения, следовательно, удобны для быстрого понимания направления векторов.

Правило буравчика для прямого и кругового тока

Правило буравчика для прямого и кругового токаПравило буравчика для прямого и кругового тока

Если создаваемое в пространстве магнитное поле происходит от прямолинейного проводника с током, то магнитная стрелка в любой точке поля будет устанавливаться по касательной к кругам, центры которых находятся на оси проводника, а плоскости — под прямым углом к проводнику.

В этом случае курс вектора МИ определим с помощью правила правого штопора (винта), т. е. при вращении штопора таким образом, чтобы он поступательно двигался по курсу силы тока в проводе, вращение головки штопора (винта) совпадает с направлением вектора магнитной индукции B.

Из второго рисунка усматривается, что магнитные линии (МЛ) в форме кругов замыкаются вокруг проводника с током. В плоскость кругового проводника МЛ входят с одной стороны, а с другой выходят. МП кругового тока похоже на поле короткого магнита, ось которого совпадает с перпендикуляром к центру плоскости контура.

Направление поля КТ можно определить, пользуясь ПБ. Инструмент нужно установить по оси кругового тока под прямым углом к его плоскости. Вращая рукоятку по направлению тока в контуре, можно понять, какое будет направление у МП.

Правило буравчика для момента силы

Для момента силы (МС) ПБ (винта) можно сформулировать следующим образом: если крутить винт (буравчик) в ту сторону, в которую действующие силы пытаются повернуть тело, то винт будет ввинчиваться или отвинчиваться в соответствии с тем, куда будет направлен МС.

Формулировка этого правила применительно к ПР будет выглядеть так: если вообразить, что взятое в правую руку тело пытаемся повернуть в сторону, указываемую четырьмя пальцами, т. е. прилагается сила для разворота тела, то под прямым углом отогнутый большой палец укажет в ту сторону, куда вращающий момент, т. е. МС, будет направлен.

Определение направления МС по правилу ПР возможно при совмещении указательного пальца с радиус-вектором, среднего пальца — с вектором силы, а с кончика большого пальца, поднятого под прямым углом, обозреваются два вектора. В случае если от указательного пальца движение выполняется к среднему против часовой стрелки, то направление МС совпадает с направлением, устанавливаемым большим пальцем. Если движение выполняется по часовой стрелке, то направление МС обратно ему.

Правило правой руки для угловой скорости

Формулировка ППР для определения угловой скорости (УС) следующая: если кистью правой руки обхватить ось вращения таким образом, чтобы пальцы руки сходились с направлением тангенциальной скорости (ТС), то отогнутый большой палец укажет сторону вектора УС ω.

Правило правой руки для угловой скоростиПравило правой руки для угловой скорости

Как известно, крутящееся колесо имеет не только УС, но и УУ, и оно не совпадает с направлением линейной ТС, а находится под углом 90 градусов к плоскости колеса.

Такая формулировка создаёт некоторое замешательство среди неосведомлённых: оказывается, УС ω действует вдоль оси крутящегося колеса. При вращении колеса очевидно, что единственной застывшей (неподвижной) точкой считается его центр. В этой связи начало вектора УС принято устанавливать в центре вращающейся окружности.

Вектор УС может меняться лишь по величине. А вот вектор УУ изменяется как по величине, так и по направленности — при ускорении направления векторов УС и УУ совпадают, а при замедлении направленность противоположная.

Правило правой руки для векторного произведения

1-й вариант правила ПР для векторного произведения:

Если векторы изобразить таким образом, чтобы их начальные точки совпадали, и вращать 1-й вектор-сомножитель коротким путём ко 2-му вектору-сомножителю, а 4 пальца правой руки при этом указывают в сторону вращения, то большой палец, оттопыренный под прямым углом, покажет направление вектора-произведения (ВП).

2-й вариант правила ПР для ВП:

Если векторы изобразить так, чтобы совпадали их начала, а большой палец правой руки вытянуть по длине 1-го вектора-сомножителя, указательный — по длине 2-го вектора-сомножителя, то средний приблизительно покажет направление вектора-произведения.

Направление вектора-произведенияНаправление вектора-произведения

По аналогии с электродинамикой большой палец — это ток (I), указательный — вектор МИ (B), а средний палец — сила (F). Ассоциативно легче будет запомнить по расположению пальцев руки, напоминающему пистолет.

ППР для ВП означает, что когда совпадающие в одной точке векторы пытаться поворачивать по короткому маршруту — первый вектор (большой палец) ко второму (указательный палец), то буравчик будет совершать свой круг в сторону произведения векторов (средний палец).

Кто придумал правило буравчика

По поводу изобретателя этого правила и человека, придумавшего его, сведений не имеется. По разным источникам отмечаются разные имена с обязательной привязкой к фамилии, похожей на название инструмента. Однако какой-либо связи с известными физиками в данном случае нет.

Возможно это одно из тех правил, которое в силу поведения электротока и МП определило схожесть с действием известного инструмента, а потом уже было сформулировано.

Правило буравчика: рисунок (схема)

Рассмотрим наглядные примеры демонстрации правила буравчика на схемах:

Правило буравчика примерПравило буравчикаИспользование правила буравчика на схемеИспользование правила буравчика на схеме

Правило буравчика: примеры задач с решением

Задача 1. По проводнику длиной 40 см протекает ток силой 10 А. Чему равна индукция МП, куда помещён проводник, если на него действует сила 8 мН? (Ответ отразить в мТл).

Решение: Дано:

l=40 cм или=0,4 м, I=10 A, F=8 мН или=0,008 Н.

Проводим вычисление по формуле модуля магнитной индукции:

B = 0,008 Н / (0,4 м*10 A) = 0,002 Tл = 2 мTл.

Задача 2. Определить модуль силы, влияющей на проводник длиной 50 см при силе тока 10 А в магнитном поле с индукцией 0,15 Тл. (Ответ отразить в мН).

Решение: Дано:

l = 50 cм или 0,5 м, I = 10 A, B = 0,15 Tл.

Проводим вычисление по формуле силы Ампера:

F = 0,15 Tл * 10 A * 0,5 м = 0,75 Н = 750 мН

Задача 3. С какой скоростью влетает электрон в однородное МП (индукция 1,8 Тл) под углом 90 градусов к линиям индукции, если МП действует на него с силой 3,6∙10 –12 Н? (Ответ отразить в км/с).

Решение: Дано:

B = 1,8 Tл, F = 3,6*10 –12 Н, α = 90°.

Вычисление: Заряд электрона равен: q₀ = 1,6·10 –19 Кл.

Формула силы Лоренца: выразим из неё скорость, учитывая, что sin 90° = 1.

v = 3,6*10 –12 Н / (1,6*10 –19 Кл*1,8 Tл) = 1,25*10 –7 м/с = 12 500 км/с.

Ответ: v = 12 500 км/с.

Задача с использованием правила буравчикаЗадача 4Задача 5 на правило буравчикаЗадача 5 на правило буравчика

Ознакомившись один раз с ППР и ПЛР, понимаешь, до какой степени они легки и просты в применении. Ведь эти правила компенсируют слабые знания некоторых законов физики, а конкретно электротехники. Основное в этих правилах — не перепутать путь течения тока.

Преимущества ППР и ПЛР как раз заключается в том, что они дают возможность с достаточной точностью определить основные параметры без применения дополнительных приборов. Правила используются и при различных опытах и испытаниях, и в практике, если дело касается проводников и электромагнитных полей.

Левой руки правило — это… Что такое Левой руки правило?

 Левой руки правило

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»

Wikimedia Foundation. 2010.

Смотреть что такое Левой руки правило в других словарях:

ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… … Большой Энциклопедический словарь

ЛЕВОЙ РУКИ ПРАВИЛО — для определения направления механич. силы, к рая действует на находящийся в магн. поле проводник с током: если расположить левую ладонь так, чтобы вытянутые пальцы совпадали с направлением тока, а силовые линии магн. поля входили в ладонь, то… … Физическая энциклопедия

левой руки правило — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… … Энциклопедический словарь

ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, к рая действует на находящийся в магн. поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магн. поля входили в ладонь, то отставленный… … Естествознание. Энциклопедический словарь

Левой руки правило — удобное для запоминания правило для определения направления механической силы, которая действует на находящийся в магнитном поле проводник с током. Л. р. п. можно сформулировать следующим образом: если расположить левую ладонь так, чтобы… … Большая советская энциклопедия

ПРАВИЛО ЛЕВОЙ РУКИ — ПРАВИЛО ЛЕВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА … Научно-технический энциклопедический словарь

правило левой руки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleleft hand ruleMaxwell s rule … Справочник технического переводчика

Правило левой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия

правило левой руки — kairės rankos taisyklė statusas T sritis fizika atitikmenys: angl. Fleming’s rule; left hand rule vok. Linke Hand Regel, f rus. правило левой руки, n; правило Флеминга, n pranc. règle de la main gauche, f … Fizikos terminų žodynas

Правой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия


Источник: rc74.ru