Как зарядить аккумулятор от солнечной батареи

Содержание

Вопрос заряда аккумуляторов от солнечных батарей напрямую без контроллеров давно меня интересует, и мои тесты это пока подтверждают. Опираясь на цифры полученные из моего MPPT контроллера, на свой опыт и информацию из сети я понял что это возможно. В стандартном варианте когда на 12-ти вольтовый аккумулятор приходится по 36 солнечных элементов зарядка напрямую неэффективна, и даже опасна. И если не контролировать напряжение заряда то можно перезарядить аккумулятор вплоть до выкипания электролита и нагрева самого АКБ. Ну или с аккумулятором ничего не случится, это если у вас слабенькая солнечная панель с током в 1 ампер, а аккумулятор автомобильный 60Ач.

Точка максимальной мощности поликристаллической солнечной панели на 36 элементах зимой по данным моего контроллера составляет 85% от напряжения холостого хода. Это равняется 18.7 вольт, но в диапазоне от 17.0в до 19.5в мощность меняется не критично, и она остаётся максимально высокой. При этом такая картина остаётся даже в пасмурную погоду. Да при отсутствии солнца точка MPPT смещается ближе к 17-18 вольт, но и при 19в мощность солнечной панели всё ещё почти максимальная.

Летом в связи с перегревом солнечных батарей точка MPPT немного ниже, и пик держится на напряжении 17.3 вольта, это 79% от напряжения холостого хода. Но правда в самую жару, когда под 40 градусов в тени, смещение может доходить до 16 вольт.

Если бы наш аккумулятор был на 18 вольт, то есть не шесть, а восемь банок, то солнечную панель к нему можно было бы подключать напрямую. При этом даже в пасмурную погоду была бы зарядка ничуть не хуже чем через MPPT контроллер. И в таком варианте аккумулятор невозможно перезарядить так как с ростом напряжения от 19в и выше ток заряда будет снижаться и падать вплоть до нуля к 21 вольт. В данном случае я говорю о кальциевых автомобильных аккумуляторах.

Но таких аккумуляторов состоящих из восьми банок не бывает, да и инверторов на 18 вольт тоже нет. Но вообще если бы солнечная панель была не на 36 элементов, а на 27 элементов. То тогда без всяких MPPT контроллеров была бы максимальная эффективность заряда, так как в этом случае высокая точка максимальной мощности была бы в диапазоне от 12.0 до 13.7 вольт. А зимой поднималась бы до 14.2 вольт и даже выше. И только когда напряжение на АКБ будет подниматься выше, то ток заряда будет сам снижаться, это связано со смещением точки MPPT, и далее более подробно.

Вообще получается интересная картина, если на 27 элементов приходится АКБ 12в. Летом когда самая жара точка максимальной мощности смещается значительно ниже. И если напряжение на АКБ начинает расти выше то ток начинает падать, и уже на напряжении выше 13 вольт падение мощности очень заметно. Получается так, точка максимальной мощности в жару будет в диапазоне 12-13 вольт, и при росте напряжения на акб до 13.5 вольт ток от солнечной панели значительно снизится. А при 14 вольт ток будет уже совсем небольшой, и так как с аккумуляторов всегда берётся какая то энергия, пусть и небольшая, то напряжение на АКБ выше подниматься не будет. Плюс сам аккумулятор будет ограничивать напряжение снижая КПД заряда.

Но чтобы так было нужно чтобы ёмкость АКБ и максимальный ток от солнечных батарей были 1:10 или более. И под аккумуляторами я подразумеваю обычные автомобильные кальциевые. То есть на панель 12в 100вт с током заряда в 5.4А подойдёт аккумулятор ёмкостью 55Ач. И летом в эту самую жару от панели на 27 элементов при 14.0-14.7в на АКБ ток заряда будет всего около 1-2А, и этот ток не сможет вскипятить аккумулятор, и напряжение не будет расти далее. А с учётом небольшого потребления из акб напряжение и до 14в возможно не поднимется. Но если аккумулятор будет не заряжен то в диапазоне 12-13 вольт заряд АКБ будет максимальным от солнечной батареи, то есть максимальный ток заряда, и уменьшаться он будет сам по мере напряжения на АКБ.

С понижением температуры картина зарядки аккумулятора будет меняться. Точка MPPT будет сдвигаться вверх и при около нулевой температуре аккумулятор будет заряжаться уже до 14-14.5 вольт и только после этого начнётся значительное падение тока от солнечной батареи состоящей из 27 элементов. При этом если даже из аккумулятора ничего не будет потребляться то сам аккумулятор начнёт ограничивать рост напряжения. И если даже напряжение вырастет до 15 вольт, то ток от солнечной батареи ещё снизится и этот ток не в состоянии будет вскипятить акб и продолжить рост напряжения на нём.

В зимние морозы точка MPPT будет ещё выше, и это тоже большой плюс. Повышенное напряжение на АКБ после глубоких разрядов, когда солнца не было несколько дней скажется на последних очень хорошо. Зимой часто аккумуляторы разряжается глубоко, в вот полностью заряжаются не часто, и тут повышение напряжения до 15 вольт и даже 16 вольт будет способствовать десульфатации. Ну а понижение тока от солнечной панели не сможет вскипятить аккумулятор.

Получается идеальный балланс на круглый год, когда надо аккумулятор заряжается более полно, в зимние месяцы. А летом наоборот когда акб каждый день заряжается то его не нужно доводить до 14.7 вольт и выше.

В современных контроллерах пытаются сделать нечто подобное ступенчатым зарядом, и возможностью настройки контроллера. Но здесь при заряде напрямую от панели на 27 ячеек всё происходит само собой. Понятно что с гелевыми аккумуляторами лучше так не делать, а вот автомобильным и AGM аккумуляторам это очень понравится.

Вообще на рынке есть солнечные панели на 60 элементов, предназначены они для заряда аккумуляторов на 24 вольта. Но так как там приходится по 30 элементов на АКБ, то тут нужен обычный PWM контроллер. При этом в таком варианте даже MPPT контроллер не может дать больше чем заряд через простой PWM контроллер. Решение очень правильное, но всё же от необходимости контроллера это решение не избавляет. Зато с солнечной панели берётся почти максимальная мощность, а контроллер позволяет работать с разными типами АКБ, и PWM контроллер значительно дешевле чем MPPT.

Если же солнечные панели на 36 элементов, как у многих, и у меня в том числе, то тут можно сделать систему на 48 или 96 вольт. Если на 48 вольт то здесь четыре аккумулятора последовательно, а солнечных панелей нужно три штуки последовательно. В этом случае приходится как раз по 27 элементов на аккумулятор. Тоесть как я говорил выше получается что без всяких контроллеров можно заряжать аккумуляторы напрямую, и никак вообще не контролировать заряд АКБ. Там всё само будет происходить как надо, и с максимальным КПД.

Вообще в системе на 48 вольт одни плюсы в виде значительно меньших токов в сравнении с 12 или 24 вольта системами. Но есть такой минус как дисбаланс по напряжению в последовательно соеденённых аккумуляторах, правда и на 24 вольта тоже такая беда. Со временем этот дисбаланс усиливается и в итоге при казалось бы общем номинальном напряжении 56-60 вольт аккумуляторы заряжены, но нет. Оказывается на трёх акб уже по 14-15 вольт и они активно кипят, а на четвёртом всего 12 вольт. Потом при разряде его напряжение упадёт до 10 вольт и даже более. И вскоре вы поймёте что с аккумуляторами что то не то, не держат заряд и напряжение сильно проседает под нагрузкой.

Чтобы этого избежать придумали балансиры, и сейчас всё чаще люди их ставят. Балансиры выравнивают напряжение на аккумуляторах. Но вообще дисбаланс напряжения может произойти и в самих банках аккумулятора. Иногда бывает что умирает одна банка, и из-за неё приходится выкидывать аккумулятор. К чему я это говорю, а тому что если заряжать аккумуляторы до напряжения не выше 13.8-14.5 вольт то даже балансиры не помогут, хотя их наличие огромный плюс.

Иногда нужно аккумуляторы доводить до напряжения выше 15 вольт. При таком напряжении КПД заряда сильно снижается и начинается процесс тепловыделения, правда еле заметный при оптимальном малом токе, и процесс движения электролита. Так вот те банки в аккумуляторе, которые достигли напряжения по 2.5 вольт уже почти не заряжаются. А те банки на которых ещё по 2.1-2.3 вольта, они продолжают заряжаться и общий вольтаж постепенно выравнивается. Чем дольше аккумулятор под высоким напряжением тем лучше.

При этом нужно понимать что заряжать нужно малым током чтобы аккумулятор не закипел и не выкепал электролит, хотя водички и так нужно доливать.

Многие контроллеры этого делать не умеют. В основном в контроллерах зашиты готовые алгоритмы заряда, и вот именно они и портят АКБ. Хотя они сделаны такими чтобы можно было подключать аккумуляторы разной ёмкости, и солнечные панели, и при этом не закипятить перезарядом сами аккумуляторы. Это как бы защита от дурака. Понятно что например если у вас солнечные панели могут давать токи к примеру до 50А, а у вас там аккумулятор всего на 200Ач, то если выставить напряжение заряда в 15 вольт этот аккумулятор будет кипеть когда зарядится, и в итоге долго не проживёт. Так как нет ограничения по току то тут рекомендация уже стандартная, для гелевых не выше 13.8-14 вольт, а с жидким электролитом не выше 14.2-14.4 вольта. А вот если наоборот, большой аккумулятор и ток заряда слабенький, то тут если даже напряжение до 15 вольт поднимется то акб не закипит.

При этом в первом случае, аккумулятор при заряде до 14 вольт прослужит меньше так как после глубоких разрядов для восстановления плотности электролита напряжения 14 вольт маловато. Поэтому как бы и рекомендации не разряжать аккумуляторы глубоко.

Как пример автоматические зарядные устройства для автомобильных аккумуляторов. Их можно гонять сутками, при этом аккумуляторы не закипают, хотя там напряжение заряда ровно 16.2 вольта, и это не случайно. Зарядное устройство повышенным напряжением заставляет кристаллы сульфата свинца растворяться, высвобождается серная кислота и растёт плотность электролита. А слабый ток заряда не даёт аккумулятору кипеть.

Ну на этом я заканчиваю, думаю смысл всего этого понятен, хотя думаю те кто не в теме вряд ли осилят. Но всёже надеюсь что это кому то было полезно и интересно. Смысл это чтобы на аккумулятор приходилось по 27 ячеек, при этом нужно чтобы ёмкость аккумулятора была в десять раз больше максимального тока от солнечной батареи, или более. Тогда при заряде напрямую сложатся идеальные условия для заряда автомобильных аккумуляторов, да впринципе и других с жидким электролитом.

Зачем это нужно спросите вы, ну во-первых это экономия на MPPT контроллере заряда, и большой плюс в надёжности так-как контроллер может сломаться. При этом отбор энергии с солнечных батарей будет не хуже с MPPT. А также так аккумуляторы будут заряжаться более правильно.

В данной статье описывается зарядка от солнечных батареек, её особенности и как легко сделать её самому без особых затрат, различные способы.

Нередко случается, когда выехав на природу с ночёвкой, к утру уже садится аккумулятор. Аккумулятор постоянно теряет свою силу, как во время движения, так и на стоянке, работа приёмника, кондиционера, регистратора, всё потребляет зарядку. Для подобных случаев существуют солнечные батареи для зарядки(12 Вт), они бывают разные по форме, размерам и функциям. Но, к сожалению, работают они только в солнечный день.

Особенности зарядки зависят:

  • от времени суток;
  • от погоды;
  • от размеров панели.

Как сделать батарею и где её разместить?

Существует два варианта, которые имеют свои плюсы и минусы:

  1. На крыше автомобиля
    Нужно приобрести небольшую солнечную панель и класть её заряжаться на самый верх машины, можно на люк (площадь должна быть около 1‐м в квадрате). Самое главное – это солнце и правильное положение панели. Она должна быть мощностью от 30 до 60 Ват, прикрепить её можно на двухсторонний скотч, по периметру проклеить прозрачным скотчем, чтобы пыль не попадала и не ложилась на солнечную панель. Наблюдать за тем, чтобы её не унесло ветром. Можно также приобрести контролёр для солнечной панели с мощностью(10 ампер) и поставить его в панели приборов. Он присоединён к аккумулятору, панели, розеткам. Но это является самым лёгким первым способом.

Внимание:
Если речь идёт о стоянке где – то, например, в поле, то вопрос подзарядки решить просто, а если необходимо зарядить устройство во время езды, то это становится проблемой для такой зарядки на батарейках. Можно придумать всякие подставки под батареи, чтобы на неё попадало солнце.

  1. Наверх приборной доски
    Устройство прикрепляется внутри салона, что безопасно. Никто не снимет его и погодные условия не будут влиять. Удобно, что такую зарядку можно присоединить к прикуривателю и не возникнет никаких проблем как с проводами на крыше. Не фиксируя устройство, можно заряжать им и на стоянке и во время движения. Но площадь только определённого размера, что не может полностью зарядить АКБ, только до определённого уровня. И при движении нужно, чтобы направление машины совпадало с потоком солнечных лучей, а то результата не будет, хотя производители заявляют о работе таких батарей даже в плохую погоду.

Внимание:
АКБ заряжают в щадящем режиме, сила тока не должна быть выше 0,1 от ёмкости. При работе батареи мощностью 60, сила тока заряда не должна быть выше 6 A, либо АКБ испортится.

Для полной зарядки АКБ рекомендуют применять солнечную зарядку для 12 ВТ на длину машины не более метра, где развивается мощность 15 вт. Желательно при возможности использовать целую цепь из панелей, распределив их правильно, чтобы на них попадали лучи солнца.

В настоящее время на рынке автозапчастей существует различные модели солнечных батарей, Большинство из них производят в странах Восточной Азии и имеют различные широкие возможности. Приобретение разных устройств это как кот в мешке, не известно хорошее ли попадётся, тем не менее, существуют очень качественные и работоспособные изделия для зарядки АКБ 12 вт.

Было бы здорово, если бы вы могли заряжать батарею мобильных телефонов, используя солнце вместо зарядного устройства USB, неправда ли?

В этом уроке мы покажем вам, как заряжать литиевую батарейку 18650, используя чип TP4056 и солнечную энергию (или просто СОЛНЦЕ). В итоге у нас получится портативный блок питания.

Общая стоимость этого проекта, за исключением батареи, составляет чуть менее 5 долларов США. Батарея добавит еще от $4 до $5 баксов. Таким образом, общая стоимость проекта составляет около 10 долларов США. Все компоненты доступны на АлиЭкспресс по действительно хорошей цене.

Комплектующие

Для этого проекта нам понадобятся:

  • 5В солнечная батарея (убедитесь, что она составляет 5В и не меньше);
  • монтажная плата общего назначения, макетная плата;
  • 1N4007 высоковольтный высокоомный диод (для защиты от обратного напряжения). Этот диод рассчитан на ток в прямом направлении 1А с пиковым значением обратного напряжения 1000 В;
  • Медный провод;
  • 2x клеммные колодки PCB;
  • держатель батареи 18650;
  • аккумулятор 3.7V 18650;
  • плата защиты аккумулятора TP4056 (с защитой IC или без нее);
  • усилитель мощности 5В;
  • некоторые соединительные провода;
  • оборудование для пайки.

Как работает TP4056

Если посмотреть на саму плату, то мы увидим, что она имеет чип TP4056 наряду с несколькими другими компонентами, представляющими для нас интерес.

На плате один красный и один синий светодиод. Красный загорается, когда он заряжается, а синий — при полной зарядке. Также есть мини-USB-разъем для зарядки аккумулятора от внешнего USB-зарядного устройства. Еще есть также два места куда вы можете припаять свою собственную зарядную единицу. Эти места отмечены как IN- и IN +.

Мы будем использовать их для питания этой платы. Батарея будет подключена к этим двум точкам, обозначенным как BAT + и BAT-. Плата требует входного напряжения от 4,5 до 5,5 В для зарядки аккумулятора.

На рынке доступны две версии этой платы. Один с модулем защиты от разряда батареи и один без него. Обе платы имеют ток зарядки 1А и отключении по завершении.

Кроме того, один с защитой отключает нагрузку, когда напряжение аккумулятора падает ниже 2,4 В, чтобы защитить батарею от слишком низкого тока (например, в пасмурный день), а также защищает от перенапряжения и обратной полярности (обычно уничтожает себя вместо батареи), однако, пожалуйста, проверьте, правильно ли вы всё подключили в самый первый раз.

Схема устройства

Эти платы действительно очень сильно нагреваются, поэтому мы будем паять их немного над печатной платой. Для этого мы будем использовать жесткий медный провод, чтобы сделать ножки для печатной платы. У нас будет 4 кусочка медных проводов, чтобы сделать 4 ножки для монтажной платы. Для этого вы также можете использовать — штыревые разъемы вместо медного провода.

Сборка очень проста.

Солнечный элемент подключается к клеммам IN + и IN-платы зарядки TP4056 соответственно. Диод вставлен в положительный конец для защиты от обратного напряжения. Затем BAT + и BAT- платы подключаются к + ve и -ve концам батареи. Это все, что нам нужно для зарядки аккумулятора.

Теперь для питания платы Arduino нам нужно увеличить выход до 5В. Итак, мы добавляем усилитель напряжения 5 В к этой схеме. Подключите -ve батареи к IN- усилителя и ve+ к IN+, добавив переключатель между ними. Мы подключили бустерную плату прямо к зарядному устройству, но мы рекомендуем установить там SPDT-переключатель. Поэтому, когда устройство заряжает батарею, она заряжается и не используется.

Солнечные элементы подключены к входу зарядного устройства литиевой батареи (TP4056), выход которого подключен к литиевой батарее 18560. Усилитель напряжения 5 В также подключен к аккумулятору и используется для преобразования от 3,7 В постоянного тока до 5 В постоянного тока.

Напряжение зарядки обычно составляет около 4,2 В. Вход усилителя напряжения варьируется от 0,9 до 5,0 В. Таким образом, он увидит около 3,7 В на его входе, когда батарея разряжается, и 4.2 В, когда она подзаряжается. Выходной сигнал усилителя до остальной части цепи будет поддерживать его значение 5 В.

Этот проект будет очень полезен для питания удаленного регистратора данных. Как известно, источник питания всегда является проблемой для удаленного регистратора, и в большинстве случаев нет доступной розетки. Подобная ситуация заставляет вас использовать некоторые батареи для питания вашей цепи. Но в конце концов, батарея умрет. Наш недорогой проект солнечного зарядного устройства станет отличным решением для такой ситуации.


Источник: hololenses.ru