Простое объяснение правила буравчика

Содержание

В этой части публикации рассматриваются электрические величины. Поэтому следует напомнить о направлении течения тока в проводке – от «плюса» источника питания к «минусу». От контрольной точки с большим потенциалом (ϕ1=10 B) – к месту измерения с относительно меньшим (ϕ1= 5 B).

Кольцевая проводящая конструкция

На иллюстрации представлена кольцевая конструкция. Для уточнения характеристик системы в соответствии с базовыми правилами винт вкручивают с учетом реального направления силовых линий. Вращение рукоятки соответствует току в проводе, подключенному к источнику питания.

Пояснение правила

В этом примере необходимо выяснить направление вектора (В) магнитной индукции и соответствующую конфигурацию линий силового поля. Для проверки сжимают руку в кулак. Один палец ставят вертикально – известный жест «Класс!». Он будет соответствовать движению тока. Вектор, обозначающий магнитное поле, совпадает с положением четырех сжатых пальцев.

Важно! Нельзя прикасаться к проводнику под напряжением при проведении эксперимента, чтобы исключить поражение электротоком. Для наглядности опыт можно повторить с железными опилками

Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля

Для наглядности опыт можно повторить с железными опилками. Гранулы рассыпают на плоской поверхности. Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод. После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля.

К сведению. По рассмотренной схеме определяют полюса катушки, подключенной к источнику питания. Пользуются стандартным алгоритмом ППР. Отогнутый большой палец будет показывать на северный полюс.

Аналитическая геометрия в пространстве

Каждому известна задачка: стоя на одном берегу реки, определить ширину русла. Кажется уму непостижимым, решается в два счета методами простейшей геометрии, которую изучают школьники. Проделаем ряд несложных действий:

  1. Засечь на противоположном берегу видный ориентир, воображаемую точку: ствол дерева, устье ручейка, впадающего в поток.
  2. Под прямым углом линии противоположного берега сделать засечку на этой стороне русла.
  3. Найти место, с которого ориентир виден под углом 45 градусов к берегу.
  4. Ширина реки равна удалению конечной точки от засечки.

Определение ширины реки методом подобия треугольников

Используем тангенс угла. Не обязательно равен 45 градусов. Нужна большая точность – угол лучше брать острым. Просто тангенс 45 градусов равен единице, решение задачки упрощается.

Аналогичным образом удается найти ответы на животрепещущие вопросы. Даже в микромире, управляемом электронами. Можно однозначно сказать одно: непосвященному правило буравчика, векторное произведение векторов представляются скучными, занудными. Удобный инструмент, помогающий в понимании многих процессов. Большинству будет интересным принцип работы электрического двигателя (безотносительно к конструкции). Легко может быть объяснен использованием правила левой руки.

Во многих отраслях науке бок-о-бок идут два правила: левой, правой руки. Векторное произведение иногда может описываться так или эдак. Звучит расплывчато, предлагаем немедленно рассмотреть пример:

Допустим, движется электрон. Отрицательно заряженная частица бороздит постоянное магнитное поле. Очевидно, траектория окажется изогнута благодаря силе Лоренца. скептики возразят, по утверждениям некоторых ученых электрон не частица, а скорее, суперпозиция полей. Но принцип неопределенности Гейзенберга рассмотрим в другой раз. Итак, электрон движется:

Расположив правую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление полета частицы, отогнутый на 90 градусов в сторону большой палец вытянется в направлении действия силы. Правило правой руки, являющееся иным выражением правила буравчика. Слова-синонимы. Звучит по-разному, по сути – одно.

Правило левой руки

Приведем фразу Википедии, отдающую странностью. При отражении в зеркале правая тройка векторов становится левой, тогда нужно применять правило левой руки вместо правой. Летел электрон в одну сторону, по методикам, принятым в физике, ток движется в противоположном направлении. Словно отразился в зеркале, поэтому сила Лоренца определяется уже правилом левой руки:

Если расположить левую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление течения электрического тока, отогнутый на 90 градусов в сторону большой палец вытянется, указывая вектор действия силы.

Видите, ситуации похожие, правила просты. Как запомнить, которое применять? Главный принцип неопределенности физики. Векторное произведение вычисляется во многих случаях, причем правило применяется одно.

Что такое магнитное поле

Все, наверное, знают что такое постоянные магниты — они «липнут» к железу и некоторым другим материалам. Если приблизить два магнита, то они будут притягиваться или отталкиваться — в зависимости от того, как мы их повернем друг относительно друга. Почему и за счет чего так происходит? За счет того, что вокруг магнитов создается магнитное поле. Оно возникает при движении заряженных частиц. Например, вокруг провода, по которому протекает электрический ток, есть магнитное поле. Оно слабое, но оно есть.

Магнитное поле нельзя увидеть, но можно ощутить

Постоянные магниты

Как же тогда с магнитами? Откуда в них магнитное поле, ведь в них нет направленного движения частиц? Все просто. В них магнитное поле создается зарядами частиц. Как известно, любой материал состоит из положительно и отрицательно заряженных частиц. В некоторых материалах частицы можно расположить так, чтобы положительные были сконцентрированы с одной стороны, отрицательные — с другой. Эти «две стороны» называют полюсами магнита. Отрицательный — северный, обозначается латинской буквой N и закрашивается обычно синим цветом, положительный называют «южный» и обозначается S, закрашивается в красный цвет.

Правило правой и левой руки: формулировка и применение Правило буравчика Правило буравчика Правило буравчика для определения направления магнитного поля Магнитное поле. магнитная индукция. правила буравчика и правой руки. сила ампера. правило левой руки - класс!ная физика Определение и применение правил рук и буравчика Правой руки правило вики Правило буравчика и правой руки для направления вектора магнитной индукции Правило буравчика и правой, левой руки: формула, в чем измеряется сила тока и ампера Правило буравчика

Постоянные магниты и их виды

Причем, стоит помнить, что однополюсных магнитов не бывает. Всегда есть два полюса. Если есть у вас большой магнит, его можно распилить пополам. И вы получите два магнита меньшего размера с двумя полюсами. Если распилите их — получите еще более мелкие двухполюсные магнитики.

Постоянные магниты можно сделать далеко не из всех материалов. Для этих целей подходят всего три вещества: железо (Fe), никель (Ni) и кобальт (Co). Если их выдержать в магнитном поле, частицы «рассортируются» по полюсам, материал станет магнитом. Но не все будут долго сохранять эти свойства. По способности удерживать магнитные свойства, материалы разделают на магнитомягкие и магнитотвердые материалы. Первые быстро намагничиваются, но и быстро теряют свои свойства. К таким относится железо (не обработанное). Магнитотвердый материал — например, сталь — в магнитном поле надо выдерживать долго. Зато после «выдержки» он становится магнитом на значительный промежуток времени. Можете поэкспериментировать со стальными скрепками.

Что такое магнитное поле

Приближая магниты друг к другу, на некотором расстоянии вы начнете ощущать, как они притягиваются или отталкиваются. Чем ближе подносите, тем сильнее они взаимодействуют. Все потому, что вокруг них существует магнитное поле. И чем ближе к магниту, тем поле сильнее. Причем выглядит это поле как округлые линии, которые выходят из северного полюса и «заходят» в южный.

Магнитное поле можно представить в виде линий

Почему так решили? А потому что можно эти линии увидеть «вживую». Для этого надо провести эксперимент. На лист фанеры положить магнит, насыпать вокруг мелких металлических опилок и лист фанеры немного потрусить. Металлические опилки расположатся именно так, как показано на рисунке ниже справа

Обратите внимание — чем ближе к магниту, тем опилок больше, чем дальше — тем меньше. Это потому что магнитное поле ослабевает по мере удаления

Экспериментальное подтверждение: смотрим на магнитное поле и на взаимодействие полюсов

Опилки помогут понять и правила притяжения или отталкивания полюсов. На левом рисунке мы видим что происходит, если приблизить два противоположных полюса. Они притягиваются. Причем когда процесс завершится, картинка будет один в один как та, что справа. Как видите, они даже немного похожи.

Если поднести поближе два одноименных полюса — юг-юг или север-север — они будут отталкиваться. Это демонстрирует средний рисунок. И чем ближе их подносите, тем сильнее будет ощущаться противодействие.

Правило буравчика для магнитных полей

Речь шла о постоянных магнитах. У них все всегда понятно: где какой полюс и куда направлены линии магнитного поля — от северного полюса к южному. Но магнитное поле возникает и вокруг проводников, по которым течет ток. Просто оно слабое, так что даже если поднести два участка, по которым течет ток, особого притяжения или отталкивания мы не ощутим. Чтобы создать сильное электромагнитное поле, проводник накручивают вокруг какого-то сердечника. Это изделие называют соленоидом. Когда по нему течет ток, создается ощутимое магнитное поле. Но как направлены линии магнитного поля в электромагнитах? Где у них северный, где южный полюс? Вот это и выясняют с помощью правила буравчика.

Буравчик можно себе представить как обычный штопор с ручкой-перекладиной и витками, накрученными вправо. Чтобы закручивать такой штопор, ручку надо вращать вправо — по часовой стрелке. При этом острие штопора/буравчика продвигается вниз. Чтобы выкручивать его, надо рукоятку вращать влево — против часовой стрелки. Острие при этом движется вверх.

Правило буравчика для магнитного поля

С движением острия буравчика и направлением вращения рукоятки и связано определение направление магнитного поля. Вот как звучит правило буравчика (еще называют правило винта):

С ровными проводниками все просто. Представляете, вкручивать или выкручивать надо буравчик, получаете направление силовых линий. Если по условиям задачи есть только направление линий магнитного поля, при помощи правила буравчика можно установить направление тока. Для этого мысленно представляем, что ручка штопора крутится в указанном направлении. В зависимости от этого, определяем куда движется острие, а, значит, и куда течет ток.

Правило правой руки для угловой скорости

Формулировка ППР для определения угловой скорости (УС) следующая: если кистью правой руки обхватить ось вращения таким образом, чтобы пальцы руки сходились с направлением тангенциальной скорости (ТС), то отогнутый большой палец укажет сторону вектора УС ω.


Правило правой руки для угловой скорости

Как известно, крутящееся колесо имеет не только УС, но и УУ, и оно не совпадает с направлением линейной ТС, а находится под углом 90 градусов к плоскости колеса.

Такая формулировка создаёт некоторое замешательство среди неосведомлённых: оказывается, УС ω действует вдоль оси крутящегося колеса. При вращении колеса очевидно, что единственной застывшей (неподвижной) точкой считается его центр. В этой связи начало вектора УС принято устанавливать в центре вращающейся окружности.

Магнитное поле. вектор магнитной индукции. правило буравчика. закон ампера и сила ампера. сила лоренца. правило левой руки. электромагнитная индукция, магнитный поток, правило ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля Правило буравчика, правой и левой руки Своими руками: правило буравчика, правой и левой руки, как сделать самому, ремонт и строительство Магнитное поле. магнитная индукция. правила буравчика и правой руки. сила ампера. правило левой руки - класс!ная физика Правила буравчика и левой руки в физике: формулировка, принцип действия Правило буравчика и правой, левой руки: формула, в чем измеряется сила тока и ампера Правило буравчика, правой и левой руки - кратко и понятно Правило буравчика для определения направления магнитного поля Правило буравчика: особенности и приёмы

Вектор УС может меняться лишь по величине. А вот вектор УУ изменяется как по величине, так и по направленности — при ускорении направления векторов УС и УУ совпадают, а при замедлении направленность противоположная.

Правило буравчика: формулировка и определение

Схема и обозначения для правила буравчика

Формулировка и определение ПБ известны всем, кто знаком со школьным курсом физики. Но главным в этом правиле является его понимание, которое заключается в следующем:

  1. ПБ, не являясь законом физики, поясняет основополагающее свойство электромагнетизма.
  2. ПБ показывает свойство электрического тока и действующих рядом с ним магнитных силовых полей.

Правило буравчика: формула

ПБ даёт возможность определить некоторые параметры в электродинамике без каких-либо проблем. Взаимосвязь физических величин была выявлена в XIX столетии законом Фарадея: E = – dФ/dt, где

  • Е — ЭДС;
  • Ф — создаваемый вектором индукции магнитный поток;
  • t — временной интервал.

«Минус», стоящий в формуле после знака равенства, объясняется условием обратной направленности ЛМП току в проводнике.Для простого рассмотрения методики использования ПБ данные, по какому методу и какое соответствие должно быть для тока в проводнике, движущемся в МП, представлены в виде таблицы.

Метод определения Соответствие
ППР
Направление движения Б действующей на проводник силе
Направление сложенных пальцев индукционному току

В нижеследующей таблице представлены метод и соответствие для левой руки.

Метод определения Соответствие
ПЛР
Направление большого пальца движению контрольного провода
Направление сложенных пальцев току в контрольном проводе

Магнитное поле. Магнитная индукция. Правила буравчика и правой руки. Сила Ампера. Правило левой руки

— это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства стационарного магнитного поля

Постоянное (или стационарное) магнитное поле — это магнитное поле, неизменяющееся во времени .

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое, т.е. не имеет источника.

— это силы, с которыми проводники с током действуют друг на друга.

— это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

— это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле — это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

— направление тока в проводнике на нас перпендикулярно плоскости листа,

— направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

— аналогично магнитному полю соленоида.

Свойства линий магнитной индукции

— имеют направление;
— непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
— не пересекаются;
— по их густоте судят о величине магнитной индукции.

Правой руки правило википедия Правило буравчика — википедия. что такое правило буравчика Правило буравчика: использование, особенности применения для соленоида и формулировка положений Правило правой руки Правило буравчика Правила буравчика и правого винта: закон правой руки для соленоида Правило буравчика - коротко и ясно, определение, формула и схемы Магнитное поле. вектор магнитной индукции. правило буравчика. закон ампера и сила ампера. сила лоренца. правило левой руки. электромагнитная индукция, магнитный поток, правило ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля В чем измеряется сила тока: правило буравчика и правой руки Простое объяснение правила буравчика

Направление линий магнитной индукции

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки

( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

— это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.
Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Следующая страница «Действие магнитного поля на движущийся заряд.Магнитные свойства вещества»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках —
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Правило буравчика кратко и понятно Правило буравчика Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки Правило буравчика или правило правой руки, определение и формула Правила буравчика и левой руки в физике: формулировка, принцип действия Своими руками: правило буравчика, правой и левой руки, как сделать самому, ремонт и строительство Правило буравчика — википедия с видео // wiki 2 Правило буравчика, правой и левой руки - кратко и понятно Правило буравчика: особенности и приёмы Правой руки правило википедия

Особенности соленоида

Электромагнитное поле создает катушка, подключенная к источнику питания. На примере с кольцевой конструкцией понятно неравномерное распределение силовых линий. Это затрудняет создание рабочих схем с заданными расчетными параметрами.

Отмеченный недостаток устраняют с применением соленоида. При достаточно большом количестве витков в центральной части образуется равномерное поле с параллельными силовыми линиями. «Краевыми» искажениями, если длина значительно больше, по сравнению с диаметром, можно пренебречь. Фактически эта конструкция выполняет функции постоянного магнита. Существенное преимущество – возможность создания изделий с определенными расчетом (изменяемыми) рабочими параметрами.

Катушка и кольцевая конструкция

Для уточнения параметров поля берут катушку, как показано на картинке. Сжатые пальцы направляют с учетом подключенного электропитания. Обеспечивают совпадение с током. Большой палец отгибают в сторону. Он будет показывать сторону, в которую направлен вектор силовых линий магнитной индукции.

К сведению. Аналогичным образом применяют правило буравчика. По этой методике винт вкручивают от «+» подключенной аккумуляторной батареи к «минусовой» клемме.

Примечания

Математические детали общего понятия ориентации базиса, о котором здесь идёт речь — см. в статье Ориентация.

Под определением направления здесь везде имеется в виду выбор одного из двух противоположных направлений (выбор между всего двумя противоположными векторами), то есть сводится к выбору положительного направления.

Это означает, что другие правила могут быть также удобны в любом количестве, но их использование не является необходимым.

Это означает, что при желании можно пользоваться и противоположным правилом, и иногда это может быть даже удобно.

Понятие правого и левого базиса распространяются не только на ортонормированные, но на любые трехмерные базисы (то есть и на косоугольные декартовы координаты тоже), однако мы для простоты ограничимся здесь случаем ортонормированных базисов (прямоугольных декартовых координат с равным масштабом по осям).

Можно проверить, что в целом это действительно так, исходя из элементарного определения векторного произведения: Векторное произведение есть вектор, перпендикулярный обоим векторам-сомножителям, а по величине (длине) равный площади параллелограмма. То же, какой из двух возможных векторов, перпендикулярных двум заданным, выбрать — и есть предмет основного текста, правило, позволяющее это сделать и дополняющее приведённое здесь определение, указано там.

Левая резьба применяется в современной технике только тогда, когда применение правой резьбы привело бы к опасности самопроизвольного развинчивания под влиянием постоянного вращения данной детали в одном направлении — например, левая резьба применяется на левом конце оси велосипедного колеса

Помимо этого, левая резьба применяется в редукторах и баллонах для горючих газов, чтобы исключить подсоединение к кислородному баллону редуктора для горючего газа.

В том числе они могут быть в своих случаях и более удобными, чем общее правило, и даже иногда сформулированы достаточно органично, чтобы особенно легко запоминаться; что, правда, по-видимому, всё же не делает запоминание их всех более лёгким, чем запоминание всего одного общего правила.

Даже если мы имеем дело с достаточно асимметричным (и асимметрично расположенным относительно оси вращения) телом, так что коэффициентом пропорциональности между угловой скоростью и моментом импульса служит тензор инерции, несводимый к численному коэффициенту, и вектор момента импульса тогда вообще говоря не параллелен вектору угловой скорости, тем не менее правило работает в том смысле, что направление указывается приблизительно, но этого достаточно, чтобы сделать выбор между двумя противоположными направлениями.

Строго говоря, при этом сопоставлении есть ещё постоянный коэффициент 2, но в данной теме это не важно, так как речь идет сейчас только о направлении вектора, а не о его величине.

Не обязательное требование.

Правило буравчика для прямого и кругового тока


Правило буравчика для прямого и кругового тока

Если создаваемое в пространстве магнитное поле происходит от прямолинейного проводника с током, то магнитная стрелка в любой точке поля будет устанавливаться по касательной к кругам, центры которых находятся на оси проводника, а плоскости — под прямым углом к проводнику.

В этом случае курс вектора МИ определим с помощью правила правого штопора (винта), т. е. при вращении штопора таким образом, чтобы он поступательно двигался по курсу силы тока в проводе, вращение головки штопора (винта) совпадает с направлением вектора магнитной индукции B.

Из второго рисунка усматривается, что магнитные линии (МЛ) в форме кругов замыкаются вокруг проводника с током. В плоскость кругового проводника МЛ входят с одной стороны, а с другой выходят. МП кругового тока похоже на поле короткого магнита, ось которого совпадает с перпендикуляром к центру плоскости контура.

Направление поля КТ можно определить, пользуясь ПБ. Инструмент нужно установить по оси кругового тока под прямым углом к его плоскости. Вращая рукоятку по направлению тока в контуре, можно понять, какое будет направление у МП.

Правило правой руки для векторного произведения

1-й вариант правила ПР для векторного произведения:

Если векторы изобразить таким образом, чтобы их начальные точки совпадали, и вращать 1-й вектор-сомножитель коротким путём ко 2-му вектору-сомножителю, а 4 пальца правой руки при этом указывают в сторону вращения, то большой палец, оттопыренный под прямым углом, покажет направление вектора-произведения (ВП).

2-й вариант правила ПР для ВП:

Если векторы изобразить так, чтобы совпадали их начала, а большой палец правой руки вытянуть по длине 1-го вектора-сомножителя, указательный — по длине 2-го вектора-сомножителя, то средний приблизительно покажет направление вектора-произведения.

По аналогии с электродинамикой большой палец — это ток (I), указательный — вектор МИ (B), а средний палец — сила (F). Ассоциативно легче будет запомнить по расположению пальцев руки, напоминающему пистолет.

ППР для ВП означает, что когда совпадающие в одной точке векторы пытаться поворачивать по короткому маршруту — первый вектор (большой палец) ко второму (указательный палец), то буравчик будет совершать свой круг в сторону произведения векторов (средний палец).

Направление линий магнитной индукции внутри постоянного магнита

Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.

Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт. В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт. Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.

Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован. Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.

Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним. Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения. Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.

Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.

Понятие вектора

Полагаем, нет смысла истолковывать правило буравчика при отсутствии знания определения вектора. Требуется открыть бутылку – знание о правильных действиях поможет. Вектором называют математическую абстракцию, не существующую реально, выказывающую указанные признаки:

Правой руки правило вики Правило буравчика: использование, особенности применения для соленоида и формулировка положений Правило правой руки Правила буравчика и правого винта: закон правой руки для соленоида Правило буравчика и правой руки для направления вектора магнитной индукции Правило буравчика - коротко и ясно, определение, формула и схемы Правило правой и левой руки: формулировка и применение Правило буравчика, правой и левой руки Правило буравчика

  1. Направленный отрезок, обозначаемый стрелкой.
  2. Точкой начала послужит точка действия силы, описываемой вектором.
  3. Длина вектора равна модулю силы, поля, прочих описываемых величин.

Не всегда затрагивают силу. Векторами описывается поле. Простейший пример показывают школьникам преподаватели физики. Подразумеваем линии напряженности магнитного поля. Вдоль обычно рисуются векторы по касательной. В иллюстрациях действия на проводник с током увидите прямые линии.

Векторные величины часто лишены места приложения, центры действия выбираются по договоренности. Момент силы исходит из оси плеча. Требуется для упрощения сложения. Допустим, на рычаги различной длины действуют неодинаковые силы, приложенные к плечам с общей осью. Простым сложением, вычитанием моментов найдем результат.

Векторы помогают решить многие обыденные задачи и, хотя выступают математическими абстракциями, действуют реально. На основе ряда закономерностей возможно вести предсказание будущего поведения объекта наравне со скалярными величинами: поголовье популяции, температура окружающей среды. Экологов интересуют направления, скорость перелета птиц. Перемещение является векторной величиной.

Правило буравчика помогает найти векторное произведение векторов. Это не тавтология. Просто результатом действия окажется тоже вектор. Правило буравчика описывает направление, куда станет указывать стрелка. Что касается модуля, нужно применять формулы. Правило буравчика – упрощенная чисто качественная абстракция сложной математической операции.


Источник: uk-parkovaya.ru