Литий-ионные аккумуляторы: как правильно заряжать

Содержание

Литий-ионные аккумуляторы: как правильно заряжать

Процессы зарядки разрядки любых аккумуляторных батарей протекают в виде химической реакции. Однако заряд литий-ионных аккумуляторов — это исключение из правил. Научные исследования показывают энергетику таких батарей как хаотичное перемещение ионов. Утверждения учёных мужей заслуживают внимания. Если по науке правильно заряжать литий-ионные аккумуляторы, тогда эти приборы должны служить вечно.

Характерные особенности литий-ионных АКБ

Подтверждённые практикой факты утраты полезной ёмкости АКБ учёные видят в ионах, блокируемых так называемыми ловушками. Конечно же, как и в случае с другими подобными системами, литий-ионные приборы не застрахованы от дефектов в процессе их применения на практике.

Внутренняя коррозия и прочие дегенеративные моменты, известные как паразитные реакции электролита и электродов, не обходят стороной и этот вид энергетических приборов. Зарядные устройства для конструкций Li-ion имеют некоторое сходство с приборами, предназначенными для кислотно-свинцовых систем.

Но главные отличия таких зарядных устройств видятся в подаче завышенных напряжений на ячейки. К тому же отмечаются более жесткие допуски по токам, плюс исключение заряда прерывистым или плавающим способом при полной зарядке батареи.

Литий-ионный аккумулятор

Относительно мощный прибор питания, который может применяться в качестве накопителя энергии для конструкций альтернативных источников энергии

Если свинцово-кислотные АКБ отличаются некоторой гибкостью, с точки зрения подключений/отключений напряжения, производители литий-ионных систем категорически отвергают такой подход.

Аккумуляторы Li-ion и правила эксплуатации этих приборов не допускают возможности безграничного превышения заряда. Соответственно, не существует для литий-ионных аккумуляторов так называемого чудесного зарядного устройства, способного продлить срок службы на длительное время.

Невозможно получить дополнительную емкость Li-ion за счёт импульсного заряда или прочих известных трюков. Литий-ионная энергетика — это своего рода «чистая» система, принимающая строго ограниченное количество энергии.

Зарядка кобальто-купажированных АКБ

Классические конструкции литий-ионных батарей оснащены катодами, структуру которых составляют материалы:

  • кобальт,
  • никель,
  • марганец,
  • алюминий.

Все они обычно заряжаются напряжением до 4,20В/я. Допускаемое отклонение составляет не более +/- 50 мВ/я. Но есть также отдельные виды литий-ионных аккумуляторов на основе никеля, которые допускают величину заряда напряжением до 4.10В/я.

Кобальт-купажированные литий-ионные аккумуляторы

Кобальт-купажированные литий-ионные аккумуляторные батареи оснащаются внутренними защитными цепями, но этот момент редко спасает от взрыва аккумулятора в режиме чрезмерного заряда

Также есть разработки литий-ионных АКБ, где увеличена процентная доля лития. Для них напряжение заряда может достигать значения 4,30В/я и выше. Что же, увеличение напряжения увеличивает емкость, но выход напряжения за пределы спецификации чреват разрушением структуры АКБ. Поэтому в массе своей литий-ионные аккумуляторы оснащаются защитными цепями, цель которых держать установленную норму.

Полный или частичный заряд

Рекомендуемая норма заряда энергетической ячейки кобальто-купажированных АКБ варьируется от 0,5С до 1C. Времени для полного заряда достаточно 2-3 часа. Производители таких батарей рекомендуют заряжать их при норме 0.8C или даже меньше того, объясняя это положительными условиями для продления срока службы литий-ионной АКБ.

Однако практика показывает: большинство мощных литий-ионных АКБ могут принимать более высокий уровень напряжения при условии его кратковременной подачи. При таком варианте эффективность зарядки составляет около 99%, а ячейка остается холодной в процессе всего времени заряда. Правда, некоторые литий-ионные батареи всё таки нагреваются на 4-5C при достижении полного заряда.

Возможно, это связано с защитой или объясняется высоким внутренним сопротивлением. Для таких АКБ следует останавливать заряд при росте температуры более 10ºC на умеренной норме заряда.

Литий-ионные батареи на зарядке

Литий-ионные батареи в зарядном устройстве на зарядке. Индикатор показывает полную зарядку аккумуляторов. Дальнейший процесс грозит повредить батареи

Полная зарядка кобальто-купажированных систем наступает с пороговым значением напряжения. При этом ток падает на величину до 3 -5% от номинала.

Аккумулятор будет показывать полный заряд и при достижении какого-то уровня ёмкости, остающегося неизменным в течение продолжительного времени. Причиной этому может стать повышенный саморазряд батареи.

Xraydisk Sata3 SSDСмартфон Xiaomi POCO M3 RUАвтомобильное пусковое устройство Baseus

Увеличение тока заряда и заряд насыщения

Следует отметить: увеличение тока заряда не ускоряет достижение состояния полного заряда. Литий-ионная батарея достигнет пика напряжения быстрее, но заряд до полного насыщения ёмкости требует больше времени. Тем не менее, зарядка аккумулятора большим током быстро увеличивает ёмкость батареи примерно до 70 %.

Литий-ионные аккумуляторы не поддерживают обязательной полной зарядки, как в случае с кислотно-свинцовыми приборами. Мало того, именно такой вариант зарядки нежелателен для Li-ion. Фактически, лучше зарядить АКБ не полностью, потому что высокое напряжение напрягает аккумулятор.

Выбор порога более низкого напряжения или полного съёма заряда насыщения способствуют продлению срока службы литий-ионной батареи. Правда, такой подход сопровождается уменьшением времени отдачи энергии АКБ.

Здесь следует отметить: зарядные устройства бытового назначения, как правило, работают на максимальной мощности и не поддерживают регулировки зарядного тока (напряжения). Производители бытовых зарядных устройств для литий-ионных аккумуляторов считают продолжительный срок службы менее важным фактором, чем затраты на усложнение схемных решений.

Зарядные устройства литий-ионных батарей

Некоторые дешевые зарядные устройства бытового назначения часто работают по упрощенной методике. Заряжают литий-ионный аккумулятор в течение одного часа и менее, без перехода на заряд насыщения.

Индикатор готовности на таких устройствах загорается, когда батарея достигает порога напряжения на первом этапе. Состояние заряда при этом составляет около 85%, что нередко удовлетворяет многих пользователей.

Зарядное устройство для литий-ионных АКБ

Это зарядное устройство отечественного производства предлагается для работы с разными аккумуляторами, в том числе с литий-ионными АКБ. Аппарат имеет систему регуляции напряжения и тока, что уже хорошо

Зарядные устройства профессионального назначения (дорогостоящие) отличаются тем, что устанавливают порог зарядного напряжения ниже, тем самым продлевая срок службы литий-ионной батареи.

В таблице показаны расчетные мощности при заряде такими устройствами на разных пороговых значениях напряжения, с зарядом насыщения и без такового:

Напряжение заряда, В/на ячейку Ёмкость при отсечке высокого напряжения, % Время заряда, мин Ёмкость при полном насыщении, %
3.80 60 120 65
3.90 70 135 75
4.00 75 150 80
4.10 80 165 90
4.20 85 180 100

Как только литий-ионный аккумулятор начинает заряжаться, отмечается быстрый рост напряжения. Такое поведение сравнимо с подъёмом груза резиновой лентой, когда имеет место эффект отставания.

Емкость, в конечном итоге, будет набрана, когда аккумулятор полностью зарядится. Такая характеристика заряда типична для всех АКБ. Чем выше ток заряда, тем ярче эффект резиновой ленты. Низкая температура или наличие ячейки с высоким внутренним сопротивлением лишь усиливают эффект.

Структура литий-ионной АКБ

Структура литий-ионной аккумуляторной батареи в самом простейшем виде: 1- минусовая шина из меди; 2 — плюсовая шина из алюминия; 3 — анод из оксида кобальта; 4- катод из графита; 5 — электролит

Оценка состояния заряда путем считывания напряжения заряженной батареи нецелесообразна. Измерение напряжения разомкнутой цепи (холостой ход) после того, как батарея покоилась несколько часов, является лучшим оценочным индикатором.

Как и для других батарей, температура влияет на холостой ход точно так же, как влияет на активный материал литий-ионной АКБ. Состояние заряда смартфонов, ноутбуков и других устройств оценивается путем подсчета кулонов.

Литий-ионный АКБ: порог насыщения

Литий-ионный аккумулятор не способен поглощать избыточный заряд. Поэтому при полном насыщении аккумулятора ток заряда сразу необходимо снять. Постоянный текущий заряд может привести к металлизации элементов лития.

Такая ситуация нарушает принцип обеспечения безопасности эксплуатации таких АКБ. Чтобы свести к минимуму образование дефектов, следует как можно быстрее отключать литий-ионный аккумулятор при достижении пика заряда.

Литий-ионный дефектный аккумулятор

Этот аккумулятор уже не возьмёт заряда ровно столько, сколько ему положено. По причине неправильной зарядки он утратил свои главные свойства накопителя энергии

Как только заряд прекращается, напряжение литий-ионного аккумулятора начинает падать. Проявляется эффект уменьшения физического напряжения. Некоторое время напряжение холостого хода будет распределяться между неравномерно заряженными ячейками с напряжением 3,70 В и 3,90 В.

Здесь также обращает на себя внимание процесс, когда литий-ионная батарея, получившая полностью насыщенный заряд, начинает заряжать соседнюю (если таковая включена в схему), не получившую заряд насыщения.

Когда литий-ионные батареи требуется постоянно держать в зарядном устройстве с целью обеспечения их готовности, следует делать ставку на зарядные устройства, имеющие функцию кратковременного компенсационного заряда.

Зарядное устройство с функцией кратковременного компенсационного заряда включается, если напряжение разомкнутой цепи падает до 4.05 В/я и выключается при достижении напряжения 4.20 В/я.

Зарядные устройства, предназначенные для оперативной готовности или для работы в режиме ожидания, часто позволяют снизить напряжение батареи до 4,00В/я и заряжают литий-ионные АКБ только до уровня 4,05В/я, не давая достичь полного уровня 4.20В/я.

Подобная методика снижает напряжение физическое, неотъемлемо связанное с напряжением техническим, и способствует продлению срока службы батареи.

Заряд безкобальтовых аккумуляторов

Аккумуляторы в традиционном исполнении имеют номинальное напряжение ячейки равное 3,60 вольта. Однако для приборов, не содержащих кобальта, номинал другой. Так, литий-фосфатные аккумуляторы обладают номиналом 3,20 вольта (зарядное напряжение 3,65В). А новые литий-титанатные аккумуляторы (производство Россия) имеют номинальное напряжение ячейки 2,40В (зарядное 2,85).

Литий-фосфатные батареи

Литий-фосфатные аккумуляторные батареи относятся к накопителям энергии, которые не содержат в своей структуре кобальт. Этот факт несколько меняет условия зарядки таких аккумуляторов

Для таких батарей традиционные зарядные устройства не подходят, так как перегружают АКБ с угрозой взрыва. И наоборот, система зарядки для безкобальтовых батарей не обеспечит достаточным зарядом на 3,60В традиционный литий-ионный аккумулятор.

Графическая карта GeForceСмартфон iPhone 12Холодильник автомобильный

Превышенный заряда литий-ионного аккумулятора

Литий-ионный аккумулятор безопасно работает в пределах заданных рабочих напряжений. Однако работа батареи становится нестабильной, если она заряжается выше рабочих норм. Длительная зарядка литий-ионной батареи напряжением выше 4,30В, предназначенной под рабочий номинал 4.20В, чревата металлизацией анода литием.

Материал катода, в свою очередь, приобретает свойства окислителя, утрачивает стабильность состояния, выделяет углекислый газ. Давление аккумуляторной ячейки нарастает и если заряд продолжается, устройство внутренней защиты сработает при давлении от 1000 кПа до 3180 кПа.

Если же рост давления продолжается и после этого, открывается защитная мембрана при уровне давления 3,450 кПа. В таком состоянии ячейка литий-ионного аккумулятора находится на грани взрыва и в конечном итоге именно так и происходит.

Защита литий-ионных батарей

Структура: 1 — верхняя крышка; 2 — верхний изолятор; 3 — стальная банка; 4 — нижний изолятор; 5 — вкладка анода; 6 — катод; 7 — сепаратор; 8 — анод; 9 — вкладка катода; 10 — отдушина; 11 — PTC; 12 — прокладка

Срабатывание защиты внутри литий-ионного аккумулятора связано с повышением температуры внутреннего содержимого. Полностью заряженная аккумуляторная батарея имеет более высокую внутреннюю температуру, чем частично заряженная.

Поэтому литий-ионные батареи видятся более безопасными при условии низкоуровневой зарядки. Вот почему власти некоторых стран требуют использовать в самолётах Li-ion АКБ, насыщенные энергией не выше 30% от их полной ёмкости.

Порог внутренней температуры батарей при полной загрузке составляет:

  • 130-150°C (для литий-кобальтовых);
  • 170-180°C (для никель-марганец-кобальтовых);
  • 230-250°C (для литий-марганцевых).

Следует отметить: литий-фосфатные аккумуляторы обладают лучшей температурной устойчивостью, чем литий-марганцевые АКБ. Литий-ионные батареи не единственные из числа тех, что представляют опасность в условиях энергетической перегрузки.

К примеру, свинцово-никелевые аккумуляторы также предрасположены к расплавлению с последующим возгоранием, если насыщение энергией выполняется с нарушениями паспортного режима. Поэтому применение зарядных устройств, идеально подходящих к батарее, имеет первостепенное значение для всех литий-ионных аккумуляторов.

Некоторые выводы от анализа

Заряд литий-ионных батарей отличается упрощённой методикой по сравнению с никелевыми системами. Схема зарядки прямолинейная, с ограничениями напряжения и тока. Такая схема значительно проще, чем схема, анализирующая сложные сигнатуры напряжения, изменяющиеся по мере эксплуатации батареи. Процесс насыщения энергией литий-ионных батарей допускает прерывания, эти аккумуляторы не нуждается в полном насыщении, как в случае с кислотно-свинцовыми АКБ.

Схема зарядки для литий-ионных аккумуляторов

Схема контроллера для маломощных литий-ионных аккумуляторов. Простое решение и минимум деталей. Но схема не обеспечивает условия цикла, при которых сохраняется длительный срок службы

Свойства литий-ионных аккумуляторов обещают преимущества в работе возобновляемых источников энергии (солнечных панелей и ветряных турбин). Как правило, солнечная панель или ветрогенератор редко обеспечивают полный заряд аккумулятора.

Для литий-иона отсутствие требований стабильной подзарядки упрощает схему контроллера заряда. Литий-ионный аккумулятор не требует контроллера, выравнивающего напряжение и ток, как того требуют свинцово-кислотные АКБ.

Все бытовые и большинство промышленных литий-ионных зарядных устройств полностью заряжают аккумулятор. Однако существующие устройства зарядки литий-ионных батарей в массе своей не обеспечивают регуляцию напряжения в конце цикла.

Отсутствие этого функционала оборачивается сокращением срока службы аккумуляторов. Производители несовершенных зарядных устройств объясняют казус усложнением схемы и общим удорожанием приборов.


Источник: zetsila.ru