Как рассчитать активную мощность асинхронного двигателя

Содержание

В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.

Понятие мощности электродвигателя

Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность . Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:

КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:

Мощность и нагрев двигателя

Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.

В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.

Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:

Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.

Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.

Расчет мощности двигателя на основе измерений

На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.

Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:

Р = 1,73 · U · I · cosϕ · ƞ , где

  • U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
  • I – измеренный ток,
  • cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.

Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.

Если необходимо рассчитать потребляемую активную мощность , используем следующую формулу:

Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.

Расчет мощности при помощи счетчика электроэнергии

Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.

Определение мощности электродвигателя по потребляемому току

Мощность двигателя можно определить по потребляемому им току. Для измерения силы тока будем использовать токоизмерительные клещи.

Перед началом измерений предварительно отключаем подачу напряжения на электродвигатель. После этого снимаем крышку с клеммной коробки и расправляем токопроводящие жилы, чтобы обеспечить удобный доступ к ним.

Затем подаем напряжение на двигатель и даем поработать в режиме номинальной нагрузки в течение нескольких минут. Устанавливаем предел измерений на значение «200 А» и токовыми клещами выполняем измерение потребляемого тока на одной из фаз. Далее замеряем напряжение на обмотках с помощью щупов, входящих в комплект токоизмерительных клещей.

Колесо выбора режимов и пределов измерений устанавливаем в позицию для измерения переменного напряжения с пределом в 750 В. Щуп красного цвета присоединяем к гнезду для измерения напряжения, сопротивления и силы тока до десяти Ампер, а черного – к гнезду «COM» . Замеры выполняем между клеммами «U1-V1» или «V1-W1» или «U1-W1» .

Расчет мощности электродвигателя выполняем по формуле:

где S – полная мощность (кВА), I – сила тока (А), U – значение линейного напряжения (кВ).

Замеряем ток на одной из фаз, а также напряжение и подставляем полученные значения в формулу (например, при замере мы получили ток равный 15,2А, а напряжение – 220В):

Важно отметить, что мощность эл. двигателя не зависит от схемы соединения обмоток статора. В этом можно убедиться, выполнив измерения на этом же двигателе, но с обмотками статора, соединенными по схеме «звезда»: измеренный ток будет равен 8,8А, напряжение – 380В. Также подставляем значения в формулу:

По этой формуле мы определили мощность электродвигателя, потребляемую из электрической сети.

Чтобы узнать мощность двигателя на валу, нужно полученное значение умножить на коэффициент мощности двигателя и на коэффициент его полезного действия. Таким образом, формула мощности двигателя выглядит так:

где P – мощность двигателя на валу; S – полная мощность двигателя; сosφ – коэффициент мощности асинхронного электродвигателя; η – КПД двигателя.

Поскольку мы не располагаем точными данными, подставим в формулу средние значения cosφ и КПД двигателя:

Таким образом, мы определили мощность электродвигателя, которая равна 4 кВт.

Мы рассказали о самых надежных методах определения мощности электродвигателя. Вы также можете посмотреть наше видео, в котором подробно показано, как определить мощность электродвигателя.

Мощность асинхронного двигателя

Мощность асинхронного электродвигателя – является основным техническим параметром этого типа устройств, который влияет на сферу использования и выполняемые задачи.

Асинхронные двигатели могут иметь идентичную мощность, но различаться по частоте вращения вала, что существенно влияет на его габаритные размеры.

Асинхронный двигатель имеет три формулы для вычисления мощности:

Полная мощность (S) определяется в Вольт-Амперах (ВА). Определяется произведением напряжения на ток системы. Принято считать, что полная мощность это комплексное число, в котором активная мощность – это действительная часть, а реактивная – мнимая.

Формулы для определения полной мощности асинхронного двигателя:

S = P / cosφ = √(P 2 + Q 2 )=I*U

І – действующее значение тока;

U – действительное значение напряжения;

Активная мощность (Р) измеряется в Ваттах (Вт). Это мощность, которая потребляется сопротивлением системы на полезную работу и тепло.

Формула определения активной мощности асинхронного двигателя:

І – действующее значение тока;

U – действительное значение напряжения;

Реактивная мощность (Q) измеряется в реактивных Вольт-Амперах (ВА). Это электромагнитная мощность, которую колебательный контур системы запасает и отдает обратно в сеть. В идеале такая мощность не выполняет работы.

І – действующее значение тока;

U – действительное значение напряжения;

Расчет мощности электродвигателя

Мощность электродвигателя – паспортная характеристика прибора, превращающего электрическую энергию в кинетическую. Это один из ключевых параметров при выборе устройства для обслуживания различного оборудования. Она всегда указывается в сопроводительной документации и дополнительно «штампуется» на шильднике электрического двигателя, закрепленном на его корпусе.

Но документы не всегда сохраняются, а надпись на шильднике может затереться. В таких случаях для дальнейшей эксплуатации, проверки, подключения может потребоваться расчет мощности электродвигателя. Он производится разными способами, о которых и расскажем.

Способы расчета мощности электродвигателя

Учитывая широкое распространение, неудивительно, что формул мощности электродвигателя существует довольно много. Самые простые в плане применения на производстве – следующие три подхода.

  1. Расчет мощности электродвигателя по току. Для определения фактического показателя прибор надо подключить (напряжение – фиксированное) и изменять ток поочередно на каждой из обмоток при помощи амперметра. Алгоритм действий такой:
    • берется количество замеров;
    • определяется сила тока в Амперах для каждого замера;
    • все показатели суммируются и делятся на количество замеров;
    • среднее значение силы тока умножаем на напряжение и получаем мощность электродвигателя в кВт (или Ваттах).
    • Расчет мощности электродвигателя по размерам. Надо измерить диаметр и длину сердечника статора, узнать частоту оборотов вала.
    • Расчет мощности электродвигателя асинхронного по силе тяги:
      • тахометром определяем частоту вращения вала;
      • штангенциркулем меряем радиус вала (если нет циркуля, можно взять обычную линейку);
      • динамометр используем, чтобы замерять тяговое усилие устройства;
      • формула мощности электродвигателя выглядит как P = F (тяговая сила)*n (частота вращения)*r (радиус вала)*2*3,14.

      Формула мощности электродвигателя

      Формула мощности электродвигателя может учитывать массу нюансов технологического процесса. Благодаря развитию IT-технологий сегодня найти способы расчета такого показателя не составляет труда. А вот выбрать в огромном количестве предложенных вариантов тот, который подойдет именно вам, как показывает практика, не так-то просто.

      Чтобы вы не растерялись в огромном количестве методичек и рекомендаций интернета, предлагаем универсальный вариант формулы, который подойдет практически для любого случая. Выглядит она следующим образом.

      • P – потребляемая мощность электродвигателя (номинальная);
      • T – необходимый момент вращения на валу;
      • Ω – угловая скорость.

      У экспликатов тоже есть свои формулы.

      1. Вращающий момент (T) считается как произведение требуемого усилия тяги и радиуса рабочего органа подключаемого механизма.
        • Усилие тяги (обозначается как Ft) можно рассчитать по формуле Ft = t*M*2,5, где t –коэффициент трения (берется из таблицы данных, для подшипников качения, например, он известен и равняется 0,02), а М – масса груза, который перемещает оборудование. Произведение корректируется на коэффициент Ньютона, который тоже известен и составляет 2,5.
        • Радиус элемента вращения измеряют или берут из проектных/паспортных данных.
        • Угловую скорость определяют так: Ω = число Пи (π, принимается как 3,14)*n/30 (n – частота вращательного движения механизма, которое приводит в действие электродвигатель – берется из паспорта). Чтобы электродвигателя хватило с учетом возможных перегрузок привода, угловая скорость, рассчитанная приведенным способом, корректируется в большую сторону на коэффициент 1,5.

        При расчете мощности электродвигателя надо делать поправку на тип соединения обмоток статора, от которого зависит значение рабочего тока. В соединениях типа «звезда» ток меньше в 1,73 раза, чем в соединениях «треугольник». Соответственно, для «звезды» показатель тоже надо уменьшать в 1,73 раза.

        Расчет мощности электродвигателя для оборудования

        Чтобы определить, какой мощности электродвигатель нужен для обслуживания конкретного механизма, надо знать его (механизма) потребляемую мощность. Она обычно указывается для каждой категории установок и приборов, прописывается в паспортной документации и известна производителю. Если фактической информации по показателю нет, ее можно получить:

        • по результатам теоретических расчетов;
        • эмпирически, использовав результаты многочисленных опытов;
        • методом снятия нагрузочных диаграмм, если опытной базы эксплуатации еще не накоплено (оборудование малоизученно), здесь нужны самопишущие приборы;
        • через применение нормативов потребления энергии (статистических данных), которые учитывают удельные расходы электрической энергии при создании конкретного продукта.

        Когда потребление известно, останется подставить его в формулу следующего вида.

        • Рм – определенная теоретически/эмпирически или паспортная мощность оборудования;
        • – коэффициент полезного действия промежуточной передачи.

        Расчетный показатель используется для выбора по каталогу продукции ПТЦ «Привод». При этом ориентироваться следует на номинальные мощностные показатели электродвигателя с небольшим запасом.

        Проверять электрический двигатель по нагрузке или перегреву необходимости нет. Наш производственно-технический центр на этапе контроля качества готовых изделий проводит все испытания и расчеты с максимальным использованием материалов, которые заложены в моделях при номинальном расчете мощности электродвигателя. А вот контроль достаточности момента пуска для некоторых видов подключаемых механизмов может быть полезен. Это в особенности касается устройств с увеличенным сопротивлением трения на старте (транспортеры, рабочие узлы станков металлорезки).

        Энергетическая эффективность электродвигателя

        Как и у всех электроприборов, потребляющих электрическую энергию (платный ресурс), электродвигатель имеет свой класс энергоэффективности. От этого показателя зависят расходы производства на работу устройства. Он, в свою очередь, зависит от коэффициента полезного действия двигателя и указывается в технической документации. Как показывает практика, даже в средней категории электродвигателей (55 кВт) предпочтение версиям с более высоким классом энергоэффективности позволяет существенно снизить расходы энергии (экономия до 10 тыс. кВт в год).

        Вы можете подобрать установку оптимального класса энергоэффективности по каталогу продукции ПТЦ «Привод» – в описании моделей есть вся необходимая информация. Здесь же можно заказать регулятор мощности электродвигателя, который тоже помогает сократить расход энергии и обеспечивает плавную работу устройства без рывков (увеличивает срок его службы).


        Источник: avtika.ru