Описание датчиков dht11 и dht22

Содержание

Датчики температуры и влажности dht11 и dht22

Датчики температуры и влажности – это важная составляющая автоматики. Установленное значение температуры и влажности действует как триггер в программированных системах автоматики, запуская цепочку событий без непосредственного участия человека. Для Ардуино есть собственные датчики, которые выполняют такие функции. Называются они DHT11 и DHT22.

Описание датчика

DHT11 имеет два измерительных прибора – емкостный датчик температуры и гигрометр. Первый замеряет температуру, второй – влажность воздуха. Чип, что находится внутри датчика, работает как АЦП и выдает цифровой сигнал, считываемый микроконтроллером, к которому он подключен.

  1. Датчик в пластиковом корпусе с металлическими контактами в количестве 4 штучки.
  2. Модуль с датчиком на плате, содержащей дополнительно резистор подтяжки и трехконтактный штыревой разъем.

Монтаж можно проводить как с одним так и со вторым вариантом реализации компонента. Для практики монтажа новичкам и в реальных проектах Arduino, рекомендуется использовать модуль.

Датчики DHT11 и 12 похожи внешне друг на друга, но имеют отличия в характеристиках.

Основные технические характеристики DHT11 и DHT22

  1. Диапазон замера влажности 20-80% (погрешность до 5%).
  2. Диапазон замера температуры 0-50 °C (точность – 2°C).
  3. Питание 3-5 В.
  4. Потребляемый ток 2,5 мА.
  5. Частота 1 Гц.
  6. Габариты: 15,5 x 12 x 5,5 мм.
  7. Четыре коннектора.
  1. Диапазон замера влажности 0-100% (погрешность 2-5%).
  2. Диапазон замера температуры от минус 40 °C до плюс 125 °C (точность – 0,5°C).
  3. Питание 3-5 В.
  4. Потребляемый ток 2,5 мА.
  5. Частота 0,5 Гц.
  6. Габариты: 15,1 x 25 x 5,5 мм.
  7. Коннекторы 4 штуки с расстоянием 0,1.

Влажность измеряется в процентах. Когда сделаете замер датчиком и он покажет 55%, это значит, что вокруг места замера в воздухе находится 55% водяного пара.

Если датчик покажет 100% — скорей всего он неисправен или схема подключения неверна. А если он выдаст 0% — скорей всего тоже есть проблемы обработки данных, или же вы находитесь в центре пустыни, или в комическом пространстве.

DHT11 не используют в системах, где нужны особо точные замеры. Приближенные настоящим данным выдает DHT22. Его можно использовать в теплице, домашней метеостанции, инкубаторе. Естественно, существуют и более точные измерители температуры и влажности, но уже в другом ценовом сегменте.

Комплект подключения

  1. Плата Arduino UNO.
  2. Датчик
  3. Резистор 4,7 кОм.
  4. Беспечная макетная плата.
  5. Проводники для соединения элементов.
  1. Плата Ардуино Уно, можно нано.
  2. Модуль
  3. Проводники со штекерами для Arduino.
  1. Плата Ардуино Уно.
  2. Модуль
  3. LCD-дисплей.
  4. Проводники со штекерами для Arduino.
  5. Переходник для питания 2 в 1.

Последний комплект сможет не только замерить, но и вывести данные на экран без подключения к компьютеру. То есть, работать автономно.

Схема подключения

Чтобы подключить измеритель исходя из первого комплекта подключения, нужно использовать такой макет.

  1. Первый вывод DHT11 к Arduino UNO +5V (красный).
  2. Второй вывод к четвертому контакту Digital (синий).
  3. Третий контакт не задействован.
  4. Четвертый подключается к GND (черный)

Второй коннектор, отвечающий за передачу сигнала, нужно подключить не только к четвертому разъему интерфейса ввода/вывода, но и к питанию, через резистор. Подтянуть линию данных DHT11 к питанию необходимо для обеспечения правильной работы сенсора.

Принципиальную схему можно посмотреть ниже.

Лишен таких нюансов модуль датчика, потому как уже включает в себя «элементы подтяжки».

  1. VCC к +5V (питание, красный).
  2. OUT к цифровому разъему (данные, зеленый).
  3. GND к GND (земля, черный).

Принципиальная схема выглядит так.

  1. SCL дисплея в A5 (данные, оранжевый).
  2. SDA в А4 (данные, желтый).
  3. GND в GND (земля, черный).
  4. VCC в 5V (питание, красный).
  5. GND датчика в GND (земля, черный).
  6. DATA в A0 (данные, фиолетовый).
  7. VCC в 5V (питание, красный).

Питание с LCD дисплея и датчика подключите к одному разъему через соединительный провод 2 к 1.

Схемы готовы, теперь следует подключить их к компьютеру и с помощью скетча, запрограммировать на правильную работу.

Программная часть

Чтобы написать программу для отработки, нужно скачать с Github библиотеки DHT для датчика и LiquidCrystal_I2C для дисплея. Загрузите, разархивируйте, измените название библиотеки для сенсора на «DHT» и перенесите папки с файлами в директорию на диске \Arduino\libraries. Тоже самое, только без переименования, сделайте для библиотеки для LCD-дисплея, если вы подключили по схеме и его.

Теперь сам скетч. Написан он для вывода замеров на экран подключенного дисплея. Вносите соответствующие правки, если у вас в схеме применялись другие элементы или задействованы другие разъемы интерфейса входа/выхода. Посмотреть его можно здесь.

Использование датчиков в системах умного дома

  1. Информацию выводить на удаленный сервер и считывать ее через приложение со своего смартфона.
  2. Задействовать в схеме реле, которое будет включать вентилятор в вытяжке, если концентрация пара в ванной достигнет 85%. И отключать, когда замеры покажут норму.
  3. Или использовать в схеме умную розетку, которая включит кондиционер, чтобы привести влажность в квартире в нормальное состояние.
  4. Можно использовать и более сложные моторы, например электроприводы для окон, чтобы автоматически оно открывалось на проветривание, если концентрация влаги не в норме.
  5. Использование сенсора в фермерстве, и на той же птицефабрике – неотъемлемая часть автоматизации. С помощью несложной системы можно с легкостью контролировать процессы в инкубаторе и корректировать их, в случае отхождения от нормы.

Пробуйте, учитесь на чужих ошибках, творите, и у вас получится довести до автоматизма поставленные перед вами задачи.


Источник: future2day.ru