Как избавиться от дребезга контактов при подключении кнопки к Arduino

Содержание

Мы уже рассматривали подключение кнопки к Arduino и затрагивали вопрос дребезга контактов. Это весьма неприятное явление, которое вызывает повторные нажатия кнопки и усложняет программную обработку нажатий кнопки. Давайте же поговорим о том, как избавиться от дребезга контактов.

Инструкция по гашению дребезга контактов с помощью Arduino

Для проекта нам понадобится:

    или иная совместимая плата; ;

  • резистор номиналом 10 кОм (рекомендую приобрести набор резисторов с номиналами от 10 Ом до 1 МОм);
  • светодиод (к примеру, вот из такого набора); ; (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.

1 Проявление эффекта дребезга контактов

Дребезг контактов это явление, свойственное механическим переключателям, кнопкам, тумблерам и реле. Из-за того, что контакты обычно делают из металлов и сплавов, которые обладают упругостью, при физическом замыкании они не сразу устанавливают надёжное соединение. В течение короткого промежутка времени контакты несколько раз смыкаются и отталкиваются друг от друга. В результате этого электрический ток принимает установившееся значение не моментально, а после череды нарастаний и спадов. Длительность этого переходного эффекта зависит от материала контактов, от их размера и конструкции. На иллюстрации показана типичная осциллограмма при замыкании контактов тактовой кнопки. Видно, что время от момента переключения до установившегося состояния составляет несколько миллисекунд. Это и называется дребезгом.

Эффект дребезга контактов на осциллограммах Так выглядит эффект дребезга контактов на осциллограммах

Данные осциллограммы получены с помощью дешёвого любительского осциллографа DSO138, подробно мы рассматривали его здесь.

Этот эффект не заметен в электрических цепях управления освещением, двигателями или другими инерционными датчиками и приборами.

Но в цепях, где идёт быстрое считывание и обработка информации (где частоты того же порядка, что и импульсы дребезга, или выше), это является проблемой. В частности, Arduino UNO, который работает на частоте 16 МГц, отлично ловит дребезг контактов, принимая последовательность единиц и нулей вместо единичного переключения от 0 к 1.

2 Подключение кнопки к Arduino для демонстрации подавления дребезга

Давайте посмотрим, как дребезг контактов влияет на правильную работу схемы. Подключим к Arduino тактовую кнопку по схеме со стягивающим резистором. Будем по нажатию кнопки зажигать светодиод и оставлять включённым до повторного нажатия кнопки. Для наглядности подключим к цифровому выводу 13 внешний светодиод, хотя можно обойтись и встроенным.

Схема подключения кнопки к Arduino для демонстрации подавления эффекта дребезга контактов Схема подключения кнопки к Arduino для демонстрации подавления эффекта дребезга контактов

3 Алгоритм подавлениядребезга контактов

Чтобы реализовать задачу подавления дребезга контактов, первое, что приходит в голову:

  • запоминать предыдущее состояние кнопки;
  • сравнивать с текущим состоянием;
  • если состояние изменилось, то меняем состояние светодиода.

Напишем такой скетч и загрузим в память Arduino.

Скетч обработки нажатия кнопки без учёта эффекта дребезга контактов

При включении схемы в работу, сразу виден эффект дребезга контактов. Он проявляется в том, что светодиод загорается не сразу после нажатия кнопки, или загорается и тут же гаснет, или не выключается сразу после нажатия кнопки, а продолжает гореть. В общем, схема работает не стабильно. И если для задачи с включением светодиода это не столь критично, то для других, более серьёзных задач, это просто неприемлемо.

4 Подавление дребезга контактовс помощью задержки

Постараемся исправить ситуацию. Мы знаем, что дребезг контактов проявляет себя в течение нескольких миллисекунд после замыкания контактов. Давайте после изменения состояния кнопки выжидать, скажем, 5 мсек. Это время для человека является практически мгновением, и нажатие кнопки человеком обычно происходит значительно дольше несколько десятков миллисекунд. А Arduino прекрасно работает с такими короткими промежутками времени, и эти 5 мсек позволят ему отсечь дребезг контактов от нажатия кнопки.

Скетч обработки нажатия кнопки с задержкой для устранения эффекта дребезга контактов

В данном скетче мы объявим процедуру debounce() ("bounce" по-английски это как раз дребезг, приставка "de" означает обратный процесс), на вход которой мы подаём предыдущее состояние кнопки. Если нажатие кнопки длится более 5 мсек, значит это действительно нажатие. Определив нажатие, мы меняем состояние светодиода.

Загрузим скетч в плату Arduino. Теперь всё гораздо лучше! Кнопка срабатывает без сбоев, при нажатии светодиод меняет состояние, как мы и хотели.

5 Библиотеки для подавлениядребезга контактов

Аналогичная функциональность обеспечивается специальными библиотеками, например, библиотекой Bounce2. Для установки библиотеки помещаем её в директорию /libraries/ среды разработки Arduino и перезапускаем IDE .

Библиотека Bounce2 содержит следующие методы:

Название Назначение
Bounce() инициализация объекта Bounce;
void interval (мсек) устанавливает время задержки в миллисекундах;
void attach (номерПина) задаёт вывод, к которому подключена кнопка;
int update() обновляет объект и возвращает true, если состояние пина изменилось, и false в противном случае;
int read() считывает новое состояние пина.

Перепишем наш скетч с использованием библиотеки. Можно также запоминать и сравнивать прошлое состояние кнопки с текущим, но давайте упростим алгоритм.

Скетч обработки нажатия кнопки с использованием библиотеки для устранения влияния дребезга контактов

При нажатии кнопки будем считать нажатия, и каждое нечётное нажатие будем включать светодиод, каждое чётное выключать. Такой скетч смотрится лаконично, его легко прочитать и легко применить.

Подавление дребезга контактов с помощью Arduino

Ну и напоследок пара видео от Джереми Блюма, где он рассказывает о способах подавления дребезга контактов на примере подключения тактовой кнопки к Arduino.



Источник: soltau.ru